首页> 外文期刊>Artificial life and robotics >Generating collective foraging behavior for robotic swarm using deep reinforcement learning
【24h】

Generating collective foraging behavior for robotic swarm using deep reinforcement learning

机译:利用深增强学习为机器人群生成集体觅食行为

获取原文
获取原文并翻译 | 示例

摘要

This paper mainly discussed the generation of collective behaviors with raw camera images as the primary information input. The swarm robotic system exhibits considerable advantages when faced with individual-level failure or the lack of global information. Spatial information has always been a necessity in generating collective transport behavior. The rise of deep neural network technology makes it possible for a robot to perceive the environment from its visual input. In this paper, the use of deep reinforcement learning in training a robotic swarm to generate collective foraging behavior is shown. The collective foraging behavior is evaluated in a transportation task, where robots need to learn to process image information while cooperatively transport foods to the nest. We applied a deep Q-Learning algorithm and several improved versions to develop controllers for robotic swarms. The results of computer simulations show that using images as the main information input can successfully generate collective foraging behavior. Besides, we also combine the advantages of several algorithms to improve performance and perform experiments to examine the flexibility of the developed controllers.
机译:本文主要讨论了用原料摄像机图像作为主要信息输入的集体行为的产生。群体机器人系统面对各个级别失败或缺乏全球信息时表现出相当大的优势。空间信息始终是产生集体传输行为的必要性。深度神经网络技术的兴起使机器人可以从其视觉输入中感知环境。在本文中,示出了利用深增强学习在训练机器人群中以产生集体觅食行为。集体觅食行为在运输任务中进行评估,其中机器人需要学习处理图像信息,同时协同将食物与巢交换。我们应用了深度Q学习算法和几种改进版本,为机器人群开发控制器。计算机模拟的结果表明,使用图像作为主要信息输入可以成功地生成集体觅食行为。此外,我们还结合了多种算法的优点,以提高性能并执行实验以检查开发控制器的灵活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号