首页> 外文期刊>Artificial life and robotics >Fast incremental learning methods inspired by biological learning behavior
【24h】

Fast incremental learning methods inspired by biological learning behavior

机译:受生物学习行为启发的快速增量学习方法

获取原文
获取原文并翻译 | 示例

摘要

Model-based learning systems such as neural networks usually “forget” learned skills due to incremental learning of new instances. This is because the modification of a parameter interferes with old memories. Therefore, to avoid forgetting, incremental learning processes in these learning systems must include relearning of old instances. The relearning process, however, is time-consuming. We present two types of incremental learning method designed to achieve quick adaptation with low resources. One approach is to use a sleep phase to provide time for learning. The other one involves a “meta-learning module” that acquires learning skills through experience. The system carries out “reactive modification” of parameters not only to memorize new instances, but also to avoid forgetting old memories using a meta-learning module.
机译:由于对新实例的增量学习,基于模型的学习系统(例如神经网络)通常“忘记”了学习的技能。这是因为参数的修改会干扰旧的内存。因此,为了避免忘记,这些学习系统中的增量学习过程必须包括对旧实例的重新学习。但是,重新学习过程很耗时。我们提出了两种类型的增量学习方法,这些方法旨在以低资源实现快速适应。一种方法是使用睡眠阶段来提供学习时间。另一个涉及“元学习模块”,该模块通过经验获得学习技能。该系统不仅可以记忆新实例,还可以使用元学习模块对参数进行“反应性修改”,从而避免忘记旧的内存。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号