首页> 外文期刊>Artificial life and robotics >On-line tuning PID parameters in an idling engine based on a modified BP neural network by particle swarm optimization
【24h】

On-line tuning PID parameters in an idling engine based on a modified BP neural network by particle swarm optimization

机译:基于改进的BP神经网络的粒子群算法在线优化怠速发动机PID参数

获取原文
获取原文并翻译 | 示例

摘要

PID control systems are widely used in many fields, and many methods to tune the parameters of PID controllers are known. When the characteristics of the object are changed, the traditional PID control should be adjusted by empirical knowledge. This may result in a worse performance by the system. In this article, a new method to tune PID parameters, called the back-propagation network modified by particle swarm optimization, is proposed. This algorithm combines conventional PID control with a back propagation neural network (BPNN) and particle swarm optimization (PSO). This method is demonstrated in the engine idling-speed control problem. The proposed method provides considerable performance benefits compared with a traditional controller in this simulation.
机译:PID控制系统已广泛应用于许多领域,并且已知许多用于调节PID控制器参数的方法。当对象的特性发生变化时,应根据经验知识调整传统的PID控制。这可能会导致系统性能变差。本文提出了一种新的PID参数整定方法,即通过粒子群算法改进的反向传播网络。该算法将传统的PID控制与反向传播神经网络(BPNN)和粒子群优化(PSO)相结合。在发动机怠速控制问题中证明了该方法。与传统的控制器相比,该仿真方法具有明显的性能优势。

著录项

  • 来源
    《Artificial life and robotics》 |2009年第2期|129-133|共5页
  • 作者单位

    Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan;

    Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan;

    Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    BP neural network; particle swarm optimization; PID control; engine idling-speed control;

    机译:BP神经网络;粒子群优化;PID控制发动机怠速控制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号