首页> 外文期刊>Knowledge-Based Systems >Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting
【24h】

Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting

机译:基于粒子群算法的BP神经网络最优参数选择-以风速预测为例

获取原文
获取原文并翻译 | 示例

摘要

As a clean and renewable energy source, wind energy has been increasingly gaining global attention. Wind speed forecast is of great significance for wind energy domain: planning and design of wind farms, wind farm operation control, wind power prediction, power grid operation scheduling, and more. Many wind speed forecasting algorithms have been proposed to improve prediction accuracy. Few of them, however, have studied how to select input parameters carefully to achieve desired results. After introducing a Back Propagation neural network based on Particle Swam Optimization (PSO-BP), this paper details a method called IS-PSO-BP that combines PSO-BP with comprehensive parameter selection. The IS-PSO-BP is short for Input parameter Selection (IS)-PSO-BP, where IS stands for Input parameter Selection. To evaluate the forecast performance of proposed approach, this paper uses daily average wind speed data of Jiuquan and 6-hourly wind speed data of Yumen, Gansu of China from 2001 to 2006 as a case study. The experiment results clearly show that for these two particular datasets, the proposed method achieves much better forecast performance than the basic back propagation neural network and ARIMA model.
机译:作为一种清洁和可再生能源,风能越来越受到全球关注。风速预测对于风能领域具有重要意义:风电场的规划和设计,风电场运行控制,风电功率预测,电网运行调度等。已经提出了许多风速预测算法以提高预测精度。但是,他们中很少有人研究过如何仔细选择输入参数以获得所需结果的方法。在介绍了基于粒子游动优化(PSO-BP)的反向传播神经网络后,本文详细介绍了一种称为IS-PSO-BP的方法,该方法将PSO-BP与全面的参数选择相结合。 IS-PSO-BP是输入参数选择(IS)-PSO-BP的缩写,其中IS代表输入参数选择。为了评估该方法的预测性能,本文以酒泉的日平均风速数据和甘肃玉门市2001年至2006年的6小时风速数据为例。实验结果清楚地表明,对于这两个特定的数据集,该方法比基本的反向传播神经网络和ARIMA模型具有更好的预测性能。

著录项

  • 来源
    《Knowledge-Based Systems》 |2014年第1期|226-239|共14页
  • 作者单位

    School of Mathematics and Statistics, Lanzhou University, Lanzhou, Cansu, PR China ,Advanced Computing Lab, School of Information Science and Engineering, Lanzhou University, Lanzhou, Cansu, PR China;

    Advanced Computing Lab, School of Information Science and Engineering, Lanzhou University, Lanzhou, Cansu, PR China ,Gerontechnology Lab, Hefei University of Technology, Hefei, Anhui, PR China;

    School of Mathematics and Statistics, Lanzhou University, Lanzhou, Cansu, PR China;

    School of Mathematics and Statistics, Lanzhou University, Lanzhou, Cansu, PR China ,Advanced Computing Lab, School of Information Science and Engineering, Lanzhou University, Lanzhou, Cansu, PR China;

    School of Information Science and Engineering, Lanzhou University, Lanzhou, Cansu, PR China;

    College of Engineering and Applied Science, Stony Brook University, Stony Brook, NY, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    BP neural network; Input parameters selection; Particle swarm optimization algorithm; Wind speed; Wind forecasting;

    机译:BP神经网络;输入参数选择;粒子群优化算法;风速;风预报;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号