首页> 外文期刊>Artificial life and robotics >Rapid behavior adaptation for human-centered robots in a dynamic environment based on the integration of primitive confidences on multi-sensor elements
【24h】

Rapid behavior adaptation for human-centered robots in a dynamic environment based on the integration of primitive confidences on multi-sensor elements

机译:基于多传感器元素原始置信度的集成,在动态环境中以人为中心的机器人的快速行为适应

获取原文
获取原文并翻译 | 示例

摘要

This article presents a method for tele-operated mobile robots to rapidly adapt to behavior policies. Since real-time adaptation requires frequent observations of sensors and the behavior of users, rapid policy adaptation cannot be achieved when significant data are not differenti ated from insignificant data in every process cycle. Our method solves this problem by evaluating the significance of data for learning based on changes in the degree of con fidence. A small change in the degree of confidence can be regarded as reflecting insignificant data for learning (that data can be discarded). Accordingly, the system can avoid having to store experience data too frequently, and the robot can adapt more rapidly to changes in the user's policy. In this article, we confirm that by taking advantage of a significance evaluation not only of proposition of behavior, but also of each proposition of each piece of sensor-level data, a robot can rapidly adapt to a user's policy. We discuss the results of two experiments in static and dynamic envi ronments, in both of which the user switched policies between "avoid" and "approach."
机译:本文介绍了一种用于远程操作移动机器人快速适应行为策略的方法。由于实时适应需要经常观察传感器和用户的行为,因此当每个过程周期中重要数据与无关紧要的数据没有区别时,就无法实现快速的策略适应。我们的方法通过根据置信度的变化评估学习数据的重要性来解决此问题。置信度的小变化可以认为反映了微不足道的学习数据(可以丢弃数据)。因此,系统可以避免必须过于频繁地存储体验数据,并且机器人可以更快速地适应用户策略的变化。在本文中,我们确认,通过不仅利用行为命题的重要性评估,而且利用每个传感器级数据的命题的重要性评估,机器人可以迅速适应用户的策略。我们讨论了静态和动态环境中两个实验的结果,在这两个实验中,用户都在“避免”和“方法”之间切换了策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号