首页> 外文期刊>IEEE transactions on automation science and engineering >Person Finding: An Autonomous Robot Search Method for Finding Multiple Dynamic Users in Human-Centered Environments
【24h】

Person Finding: An Autonomous Robot Search Method for Finding Multiple Dynamic Users in Human-Centered Environments

机译:人员发现:一个自主机器人搜索方法,用于在以人为本的环境中查找多个动态用户

获取原文
获取原文并翻译 | 示例
       

摘要

Robot search for multiple dynamic users within a multi-room environment is important for social robots to find and engage in various human-robot interaction scenarios with these users. In this paper, we present a novel autonomous person search technique for a robot finding a group of dynamic users before a deadline. The uniqueness of our approach is that unlike existing robot search methods, we consider activity information to predict where, when, and for how long a user will be in a specific room. This allows for the generation of search plans without any assumption on the frequency of user movements. We represent our search problem as an extension of the orienteering problem (OP), which we define herein as the robot person search OP (PSOP). User activity information is represented as spatial-temporal user activity probability density functions (APDFs). We solve the PSOP using APDFs to generate a search plan to maximize the expected number of users found before the deadline. The solution of the PSOP is obtained in two steps. First, by solving a variant of the multiperiod knapsack problem to determine which rooms should be searched and for how long these rooms should be searched. Then, we solve the traveling salesman problem to obtain the order in which to search these rooms. Experiments were conducted to validate the performance of our robot search method in finding different numbers of multiple dynamic users for varying environment sizes and search durations. We also compared our method with two coverage planners and a Markov decision process planner. On average, our planner found more users than the other planners for a variety of scenarios. Finally, we performed experiments that introduced uncertainty into both the APDFs as well as during the search to validate the robustness of our overall approach. Note to Practitioners-The majority of current social robot applications either consider users being collocated with the robot in the same region or users being static within another region in the environment. However, several applications exist where users are dynamic within their environments and for which a robot needs to find them in order to provide assistance, for example, in office buildings, airports, museums, hospitals, and long-term care facilities. In general, these users are performing activities within these regions. We uniquely consider such activity information in order to model user location probabilities. We developed a robot search planner that uses these probabilities to find users of interest in multi-room environments. The planner is novel as it reasons about when and which regions to search and for how long, as well as if the same region needs to be searched multiple times as users can perform multiple activities during the search time frame in the same region or revisit a region to perform a new activity. We have integrated the search planner within a robot system architecture. The robot travels to each region and then uses a local planner to navigate to locations within the region. At each location, a person identification technique is used to identify the target users in order to engage in human-robot interactions. Experiments were performed for two search applications: 1) a simulated Blueberry robot finding multiple residents in a virtual representation of one of our collaborating long-term care facilities and 2) the physical Blueberry robot finding multiple staff/students on a physical floor of a university building.For both experiments, plans were generated on the robot's onboard Lenovo Thinkpad X230 using the robot operating system (ROS) in Ubuntu. User activity data and maps used for the experiments in the care facility can be found on our website (http://asblab.mie.utoronto.ca/research-areas/person-search-human-centered-environments), under multi-user robot search. The physical Blueberry robot was also equipped with an ASUS Xtion IR depth camera, a Logitech pro c920 RGB camera, and a Hokuyo laser range finder for person identification and navigation in the environment. The results showed that our system was effective in finding multiple dynamic users under varying environment sizes and search durations. Our search planner also outperformed other planners and was robust to uncertainties in the user model. Future work will consider environments with multiple floors and crowded regions, planners that directly reason about environment dynamics, and local planners that reason about user location probabilities within regions.
机译:机器人在多房间环境中搜索多个动态用户对于社交机器人来说,对于社会机器人来说是重要的,并与这些用户一起找到和参与各种人类机器人交互情景。在本文中,我们提出了一种新颖的自主人员搜索技术,用于在截止日期之前找到一组动态用户的机器人。我们的方法的独特性是,与现有的机器人搜索方法不同,我们考虑活动信息以预测用户将在特定房间中的时间何时,何时何种。这允许在用户移动的频率上产生搜索计划而没有任何假设。我们将搜索问题代表作为定向问题(OP)的扩展,我们在此定义为机器人人员搜索OP(PSOP)。用户活动信息表示为空间时间用户活动概率密度函数(APDF)。我们使用APDFS解决PSOP来生成搜索计划,以最大化截止日期前的预期用户数。 PSOP的溶液分两步获得。首先,通过求解多级环己烷面包问题的变体,以确定应搜索哪些房间以及这些房间应搜索多长时间。然后,我们解决旅行推销员问题,以获得搜索这些房间的顺序。进行实验以验证我们的机器人搜索方法的性能,在寻找不同数量的多个动态用户以进行不同的环境尺寸和搜索持续时间。我们还将我们的方法与两个覆盖计划者和马尔可夫决策过程计划员进行了比较。平均而言,我们的策划师发现更多的用户比其他计划提供更多的用户。最后,我们执行了将不确定性引入APDFS的实验以及在搜索过程中验证了我们整体方法的稳健性。注释从业者 - 大多数当前社会机器人应用程序要么认为,用户要么将用户与机器人在环境中的另一个区域中的静态中静态。然而,有几个应用程序存在用户在其环境中动态的,并且机器人需要找到它们,以便在办公楼,机场,博物馆,医院和长期护理设施中提供帮助。通常,这些用户正在执行这些区域内的活动。我们唯一地考虑此类活动信息,以便模拟用户位置概率。我们开发了一个机器人搜索计划程序,它使用这些概率来查找对多房间环境感兴趣的用户。策划者是新颖的,因为它是关于何时搜索的原因以及哪些区域搜索以及需要多次,以及当用户在同一区域中的搜索时间帧期间执行多次活动或重新访问a区域执行新活动。我们在机器人系统架构中集成了搜索计划。机器人向每个区域行进,然后使用本地计划程序导航到该区域内的位置。在每个位置,使用人识别技术来识别目标用户以便参与人机交互。实验进行了两个搜索应用:1)模拟蓝莓机器人在我们合作的长期护理设施之一的虚拟代表中找到多个居民和2)在大学的物理地板上找到多个员工/学生的物理蓝莓机器人构建。对于这两个实验,使用Ubuntu的机器人操作系统(ROS)在机器人的船上Lenovo ThinkPad X230上生成了计划。在Care设施中使用的用户活动数据和用于实验的地图可以在我们的网站上找到(http://asblab.mie.utorton.ca/research-areas/person-search-human-centered-environments),在多次用户机器人搜索。物理蓝莓机器人还配备了华硕Xtiion IR深度摄像头,Logitech Pro C920 RGB摄像头,以及用于环境中的人员识别和导航的Hokuyo激光测距仪。结果表明,我们的系统在不同环境规模和搜索持续时间下找到多个动态用户有效。我们的搜索计划者也表现出其他策划者,并且对用户模型中的不确定性具有强大。未来的工作将考虑具有多层楼层和拥挤地区的环境,规划者直接理解环境动态,以及当地规划者,其中包括区域内的用户位置概率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号