首页> 外文期刊>Artificial life and robotics >Study on evolution of the artificial flying creature controlled by neuro-evolution
【24h】

Study on evolution of the artificial flying creature controlled by neuro-evolution

机译:神经进化控制的人工飞行生物进化研究

获取原文
获取原文并翻译 | 示例

摘要

The objective of this study is to realize efficient learning for the high generalization ability of evolutionary artificial neural network (EANN). In order to achieve this objective, the evolutionary process of behavior acquisition is analyzed, and then an efficient evaluation function is led by the analysis. An artificial flying creature (AFC) is controlled to fly towards a given target point by EANN. The three-dimensional motion of the AFC is calculated by the physical engine PhysX and a numerical expression of the simple drag force. To evolve ANNs and to have the AFC flight suitably for given target points, particle swarm optimization optimizes parameters of ANNs. The results of evolutionary simulation show that generalization ability of ANNs does not always increase as evolution progresses, and it depends on given tasks of the AFC. It is also shown that diversity of input signals about target points, which the AFC goes through in flight, has positive correlation with generalization ability.
机译:这项研究的目的是为进化人工神经网络(EANN)的高泛化能力实现高效学习。为了实现这一目标,分析了行为获取的演化过程,然后通过分析来领导有效的评估功能。 EANN控制着一个人造飞行生物(AFC)飞向给定的目标点。 AFC的三维运动由物理引擎PhysX和简单阻力的数值表达式计算得出。为了发展人工神经网络并让AFC飞行适合给定的目标点,粒子群优化可优化人工神经网络的参数。进化仿真的结果表明,人工神经网络的泛化能力并不总是随着进化的进行而增加,而是取决于AFC的既定任务。还表明,AFC在飞行中经过的关于目标点的输入信号的多样性与泛化能力具有正相关关系。

著录项

  • 来源
    《Artificial life and robotics》 |2013年第4期|470-475|共6页
  • 作者单位

    Department of Information Science and Technology, Hokkaido University, Nishi 9-Chome, Kita 14-Jo, Kita-ku, Sapporo, Hokkaido 060-0814, Japan;

    Department of Information Science and Technology, Hokkaido University, Nishi 9-Chome, Kita 14-Jo, Kita-ku, Sapporo, Hokkaido 060-0814, Japan;

    Department of Information Science and Technology, Hokkaido University, Nishi 9-Chome, Kita 14-Jo, Kita-ku, Sapporo, Hokkaido 060-0814, Japan;

    Department of Information Science and Technology, Hokkaido University, Nishi 9-Chome, Kita 14-Jo, Kita-ku, Sapporo, Hokkaido 060-0814, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    artificial neural network; particle swarm optimization; artificial life; evolution; physical engine;

    机译:人工神经网络;粒子群优化;人工生活演化;物理引擎;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号