首页> 外文期刊>ACM Transactions on Graphics >Aerobatics Control of Flying Creatures via Self-Regulated Learning
【24h】

Aerobatics Control of Flying Creatures via Self-Regulated Learning

机译:通过自我调节学习控制飞行生物的特技飞行

获取原文
获取原文并翻译 | 示例

摘要

Flying creatures in animated films often perform highly dynamic aerobatic maneuvers, which require their extreme of exercise capacity and skillful control. Designing physics-based controllers (a.k.a., control policies) for aerobatic maneuvers is very challenging because dynamic states remain in unstable equilibrium most of the time during aerobatics. Recently, Deep Reinforcement Learning (DRL) has shown its potential in constructing physicsbased controllers. In this paper, we present a new concept, Self-Regulated Learning (SRL), which is combined with DRL to address the aerobatics control problem. The key idea of SRL is to allow the agent to take control over its own learning using an additional self-regulation policy. The policy allows the agent to regulate its goals according to the capability of the current control policy. The control and self-regulation policies are learned jointly along the progress of learning. Self-regulated learning can be viewed as building its own curriculum and seeking compromise on the goals. The effectiveness of our method is demonstrated with physically-simulated creatures performing aerobatic skills of sharp turning, rapid winding, rolling, soaring, and diving.
机译:动画电影中的飞行中的生物通常会执行高度动态的特技飞行动作,这需要他们极高的运动能力和熟练的控制能力。设计用于特技飞行的基于物理学的控制器(又称控制策略)非常具有挑战性,因为在特技飞行过程中,动态状态通常会保持不稳定状态。最近,深度强化学习(DRL)已显示出其在构建基于物理的控制器中的潜力。在本文中,我们提出了一种新概念,即自我调节学习(SRL),该概念与DRL相结合以解决特技飞行控制问题。 SRL的主要思想是允许代理使用附加的自我调节策略来控制自己的学习。该策略允许代理根据当前控制策略的能力来调整其目标。随着学习的进展,共同学习控制和自我调节政策。自我调节的学习可以看作是建立自己的课程并在目标上寻求折中。我们的方法的有效性通过物理模拟的生物表现出了特技技巧,包括急转弯,快速缠绕,滚动,腾飞和潜水。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号