首页> 外文期刊>Artificial life and robotics >Deep feedback GMDH-type neural network and its application to medical image analysis of MRI brain images
【24h】

Deep feedback GMDH-type neural network and its application to medical image analysis of MRI brain images

机译:深度反馈GMDH型神经网络及其在MRI脑图像医学图像分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

The deep feedback group method of data handling (GMDH)-type neural network is applied to the medical image analysis of MRI brain images. In this algorithm, the complexity of the neural network is increased gradually using the feedback loop calculations. The deep neural network architecture is automatically organized so as to fit the complexity of the medical images using the prediction error criterion defined as Akaike’s information criterion (AIC) or prediction sum of squares (PSS). The recognition results show that the deep feedback GMDH-type neural network algorithm is useful for the medical image analysis of MRI brain images, because the optimum neural network architectures fitting the complexity of the medical images are automatically organized so as to minimize the prediction error criterion defined as AIC or PSS.
机译:数据处理(GMDH)型神经网络的深度反馈组方法被应用于MRI脑图像的医学图像分析。在该算法中,使用反馈环计算逐渐增加了神经网络的复杂性。利用定义为Akaike信息标准(AIC)或预测平方和(PSS)的预测误差标准,可以自动组织深度神经网络体系结构,以适应医学图像的复杂性。识别结果表明,深反馈GMDH型神经网络算法可自动组织适合医学图像复杂性的最佳神经网络架构,从而最大程度地减少预测误差准则,因此对于MRI脑图像的医学图像分析非常有用。定义为AIC或PSS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号