首页> 外文期刊>Artificial life and robotics >Medical image analysis of abdominal X-ray CT images by deep multi- layered GMDH-type neural network
【24h】

Medical image analysis of abdominal X-ray CT images by deep multi- layered GMDH-type neural network

机译:多层多层GMDH型神经网络对腹部X射线CT图像进行医学图像分析

获取原文
获取原文并翻译 | 示例

摘要

In this study, a deep multi-layered group method of data handling (GMDH)-type neural network is applied to the medical image analysis of the abdominal X-ray computed tomography (CT) images. The deep neural network architecture which has many hidden layers are automatically organized using the deep multi-layered GMDH-type neural network algorithm so as to minimize the prediction error criterion defined as Akaike’s information criterion (AIC) or prediction sum of squares (PSS). The characteristics of the medical images are very complex and therefore the deep neural network architecture is very useful for the medical image diagnosis and medical image recognition. In this study, it is shown that this deep multi-layered GMDH-type neural network is useful for the medical image analysis of abdominal X-ray CT images.
机译:在这项研究中,数据处理(GMDH)型神经网络的多层多层方法应用于腹部X射线计算机断层扫描(CT)图像的医学图像分析。使用多层GMDH型深度神经网络算法自动组织具有许多隐藏层的深度神经网络体系结构,以最小化定义为Akaike信息准则(AIC)或预测平方和(PSS)的预测误差准则。医学图像的特征非常复杂,因此深度神经网络体系结构对于医学图像诊断和医学图像识别非常有用。在这项研究中,表明该深层多层GMDH型神经网络可用于腹部X射线CT图像的医学图像分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号