首页> 外文期刊>Archives of Computational Methods in Engineering >Symbol-Based Analysis of Finite Element and Isogeometric B-Spline Discretizations of Eigenvalue Problems: Exposition and Review
【24h】

Symbol-Based Analysis of Finite Element and Isogeometric B-Spline Discretizations of Eigenvalue Problems: Exposition and Review

机译:特征值问题的有限元和等几何B样条离散化的基于符号的分析:阐述和回顾

获取原文

摘要

We present an example-based exposition and review of recent advances in symbol-based spectral analysis. We consider constant- and variable-coefficient, second-order eigenvalue problems discretized through the (isogeometric) Galerkin method based on B-splines of degree p and smoothness For each discretized problem, we compute the so-called symbol, which is a function describing the asymptotic singular value and eigenvalue distribution of the associated discretization matrices. Using the symbol, we are able to formulate analytical predictions for the eigenvalue errors occurring when the exact eigenvalues are approximated by the numerical eigenvalues. In this way, we recover and extend previous analytical spectral results. We are also able to predict the existence of p-"optical", when discretizing the one-dimensional Laplacian eigenvalue problem. We provide explicit and implicit analytical expressions for these branches, and we quantify the divergence to infinity with respect to p of the largest optical branch in the case of smoothness (the case of classical finite element analysis).
机译:我们提出了一个基于示例的说明,并回顾了基于符号的频谱分析的最新进展。我们考虑基于度p和平滑度的B样条通过(等几何)Galerkin方法离散化的常系数和变系数二阶特征值问题。对于每个离散化问题,我们计算所谓的符号,该符号描述函数相关离散化矩阵的渐近奇异值和特征值分布。使用该符号,我们可以为当精确特征值被数字特征值近似时出现的特征值误差制定分析预测。这样,我们恢复并扩展了先前的分析光谱结果。当离散一维拉普拉斯特征值问题时,我们还能够预测p-“光学”的存在。我们为这些分支提供了显式和隐式的解析表达式,并在光滑的情况下(对于经典有限元分析而言)量化了相对于最大光学分支的p的无穷大。

著录项

  • 来源
    《Archives of Computational Methods in Engineering》 |2019年第5期|1639-1690|共52页
  • 作者单位

    Univ Insubria Dept Sci & High Technol Como Italy|USI Univ Inst Computat Sci Lugano Switzerland;

    Univ Roma Tor Vergata Dept Math Rome Italy;

    Uppsala Univ Dept Informat Technol Uppsala Sweden;

    Univ Pavia Dept Civil Engn & Architecture Pavia Italy|CNR Inst Appl Math & Informat Technol Pavia Italy|Tech Univ Munich Inst Adv Studies Munich Germany;

    Univ Insubria Dept Sci & High Technol Como Italy|Uppsala Univ Dept Informat Technol Uppsala Sweden;

    Univ Texas Austin Inst Computat Engn & Sci Austin TX 78712 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号