首页> 美国卫生研究院文献>Springer Open Choice >Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space
【2h】

Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space

机译:使用时间连续有限元和空间混合有限元对抛物线问题离散化的误差分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Variational time discretization schemes are getting of increasing importance for the accurate numerical approximation of transient phenomena. The applicability and value of mixed finite element methods in space for simulating transport processes have been demonstrated in a wide class of works. We consider a family of continuous Galerkin–Petrov time discretization schemes that is combined with a mixed finite element approximation of the spatial variables. The existence and uniqueness of the semidiscrete approximation and of the fully discrete solution are established. For this, the Banach–Nečas–Babuška theorem is applied in a non-standard way. Error estimates with explicit rates of convergence are proved for the scalar and vector-valued variable. An optimal order estimate in space and time is proved by duality techniques for the scalar variable. The convergence rates are analyzed and illustrated by numerical experiments, also on stochastically perturbed meshes.
机译:变分时间离散化方案对于瞬态现象的精确数值逼近正变得越来越重要。混合有限元方法在空间中用于模拟运输过程的适用性和价值已在各种各样的工作中得到了证明。我们考虑了一系列连续的Galerkin–Petrov时间离散方案,该方案与空间变量的混合有限元逼近相结合。建立了半离散近似和完全离散解的存在性和唯一性。为此,以非标准方式应用Banach–Nečas–Babuška定理。证明了标量和向量值变量具有明显收敛速度的误差估计。通过对偶技术对标量变量证明了在空间和时间上的最优阶估计。还通过随机扰动网格上的数值实验对收敛速度进行了分析和说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号