首页> 外文期刊>Applied numerical mathematics >Isogeometric discretizations with generalized B-splines: Symbol-based spectral analysis
【24h】

Isogeometric discretizations with generalized B-splines: Symbol-based spectral analysis

机译:具有通用B样条的异步离散化:基于符号的光谱分析

获取原文
获取原文并翻译 | 示例

摘要

We perform a spectral analysis of matrices arising from isogeometric discretizations based on hyperbolic and trigonometric generalized B-splines. Second-order differential problems with variable coefficients are considered and discretized by means of sequences of both nested and non-nested generalized spline spaces. We prove that an asymptotic spectral distribution always exists when the matrix-size tends to infinity and is compactly described by a so-called symbol, just as in the polynomial B-spline case. We observe a strong resemblance between the symbol expressions in the hyperbolic, trigonometric and polynomial cases, which results in similar spectral features of the corresponding matrices. The theoretical symbol analysis is illustrated with numerical examples, and we show how the symbol can be used to make an analytical prediction of spectral discretization errors.
机译:我们对基于双曲线和三角识别的B样曲线的异步离散化产生的矩阵的光谱分析。 通过嵌套和非嵌套广义样条空间的序列考虑和离散化具有可变系数的二阶差分问题。 我们证明了呈矩阵尺寸趋于无穷大的渐近光谱分布始终存在,并且由所谓的符号紧凑地描述,就像多项式B样条箱一样。 我们在双曲线,三角函数和多项式案例中观察到符号表达式之间的强烈相似,这导致相应矩阵的类似光谱特征。 理论符号分析用数值示例说明,我们展示了符号如何用于制作光谱离散化误差的分析预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号