首页> 外文期刊>Arabian Journal for Science and Engineering >Fault Detection of Complex Processes Using nonlinear Mean Function Based Gaussian Process Regression: Application to the Tennessee Eastman Process
【24h】

Fault Detection of Complex Processes Using nonlinear Mean Function Based Gaussian Process Regression: Application to the Tennessee Eastman Process

机译:基于非线性均值的高斯过程回归的复杂过程的故障检测:田纳西州伊斯曼流程的应用

获取原文
获取原文并翻译 | 示例

摘要

Process monitoring or fault detection and diagnosis have gained tremendous attention over the past decade in order to achievebetter product quality, minimise downtime and maximise profit in process industries. Among various process monitoringtechniques, data-based machine learning approaches have become immensely popular in the past decade.However, a promisingmachine learning technique Gaussian process regression has not yet received adequate attention for process monitoring. Inthis work, Gaussian process regression (GPR)-based process monitoring approach is applied to the benchmark TennesseeEastman challenge problem. Effect of various GPR hyper-parameters onmonitoring efficiency is also thoroughly investigated.The results of GPR model is found to be better than many other techniques which is reported in a comparative study in thiswork.
机译:在过去的十年里,流程监测或故障检测和诊断越来越受到巨大的关注以实现 更好的产品质量,最大限度地减少停机时间并最大化过程行业的利润。 在各种过程监测中 技术,基于数据的机器学习方法在过去的十年中变得非常受欢迎。但是,有希望的 机器学习技术高斯过程回归尚未接受对过程监控的充分关注。 在 这项工作,高斯过程回归(GPR)基于基准田纳西州的基础流程监测方法 伊斯曼挑战问题。 各种GPR超参数的影响也彻底研究了效率。 发现GPR模型的结果优于许多其他技术,该技术在该比较研究中报道 工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号