首页> 外文期刊>Applied Surface Science >Interfacial engineering by non-toxic graphene-based nanoribbons for improved performance of planar Sb_2S_3 solar cells
【24h】

Interfacial engineering by non-toxic graphene-based nanoribbons for improved performance of planar Sb_2S_3 solar cells

机译:基于无毒石墨烯的纳米波动界面的界面工程,用于改进平面SB_2S_3太阳能电池的性能

获取原文
获取原文并翻译 | 示例

摘要

Interfacial charge transfer is a determining factor for the development of highly efficient solar cells. In antimony based solar cells, interfacial engineering at the absorber/electron transport material interface relies on the use of a toxic CdS interlayer. In this work, an environmental-friendly interfacial engineering approach for planar Sb2S3 solar cells was implemented by using graphene-based nanoribbons. Graphene nanoribbons (GNR) and sulfur doped graphene nanoribbons (S-GNR) sheets were incorporated as interlayer between TiO2 and Sb2S3 films in planar Sb2S3 solar cells, resulting in an enhanced photovoltaic performance up to 4.1%. Kelvin probe and C-V measurements revealed that the improvement was related to the superior built-in voltage due to the lower work function of the graphene-based interlayers along with a suitable cascade interfacial charge transfer. More importantly, surface photovoltage transient and intensity-modulated photocurrent and photovoltage spectroscopies also demonstrated that the presence of these interlayers decreased the electron transport time and suppressed the formation of interfacial states, which in turns reduced the interfacial recombination pathways boosting the performance of the devices fabricated. Although S-doped GNR provides the best results, more work is in progress to determine the cause of increased efficiency and the lack of significant V-oc increase.
机译:界面电荷转移是高效太阳能电池开发的决定因素。在基于锑的太阳能电池中,吸收器/电子传输材料界面处的界面工程依赖于有毒CD中间层的使用。在这项工作中,通过使用基于石墨烯的纳米筋来实现平面SB2S3太阳能电池的环境友好型互补工程方法。石墨烯纳米波氏(GNR)和硫掺杂石墨烯纳米(S-GNR)片材在平面SB2S3太阳能电池中的TiO 2和SB2S3薄膜之间作为中间层并入,导致增强的光伏性能高达4.1%。 Kelvin探针和C-V测量表明,由于石墨烯的中间层的较低的工作函数以及合适的级联界面电荷转移,改善与卓越的内置电压有关。更重要的是,表面光电瞬态和强度调制的光电流和光电谱还证明了这些中间层的存在降低了电子传输时间并抑制了界面状态的形成,这又降低了介质制造的器件的性能的界面复合途径。 。虽然S掺杂的GNR提供了最佳效果,但更多的工作正在进行中,以确定提高效率和缺乏显着的V-OC增加的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号