首页> 外文期刊>Applied Surface Science >Highly sensitive and selective label-free detection of dopamine in human serum based on nitrogen-doped graphene quantum dots decorated on Au nanoparticles: Mechanistic insights through microscopic and spectroscopic studies
【24h】

Highly sensitive and selective label-free detection of dopamine in human serum based on nitrogen-doped graphene quantum dots decorated on Au nanoparticles: Mechanistic insights through microscopic and spectroscopic studies

机译:基于在金纳米颗粒上修饰的氮掺杂石墨烯量子点的高灵敏度和选择性的无标记多巴胺检测人体血清中的多巴胺:通过显微镜和光谱学研究获得的机理见解

获取原文
获取原文并翻译 | 示例

摘要

A rapid, facile and label-free sensing strategy is developed for the detection of dopamine (DA) in the real samples by exploiting nitrogen-doped graphene quantum dots (N-GQDs) decorated on Au nanoparticles (Au@N-GQD). The as-grown Au@N-GQD exhibits strong blue fluorescence at room temperature and the fluorescence intensity is drastically quenched in presence of DA in neutral medium. The mechanistic insight into the DA sensing by Au@N-GQDs is explored here by careful monitoring of the evolution of the interaction of Au NPs and N-GQDs with DA under different conditions through electron microscopic and spectroscopic studies. The highly sensitive and selective detection of DA over a wide range is attributed to the unique core-shell structure formation with Au@N-GQD hybrids. The quenching mechanism involves the ground state complex formation as well as electron transfer from N-GQDs. The presence of Au NPs in Au@N-GQD hybrids accelerates the quenching process (similar to 14 fold higher than bare N-GQDs) by the formation of stable dopamine-o-quinone (DQ) in the present detection scheme. The fluorescence quenching follows the linear Stern-Volmer plot in the range 0-100 mu M, establishing its efficacy as a fluorescence-based DA sensor with a limit of detection (LOD) 430 nM. Further, based on the systematic change in the intensity of absorption peak of Au@N-GQD with DA concentration, the well-known Hill equation is introduced for the sensing of DA in the range 0-10 mu M with detection limit 40 nM. The proposed sensing method has a high selectivity towards DA over a wide range of common biological molecules as well as metal ions. The quenching in Au@N-GQD fluorescence intensity makes it possible to determine the spiked DA in human serum in the linear range from 0.0 to 80.0 mu M with the limit of detection (LOD) 590 nM, which is similar to 27 fold lower than the lowest abnormal concentration of DA in serum (16 mu M). This sensing scheme is also successively applied to trace DA in Brahmaputra river water sample with LOD 480 nM including its satisfactory recovery (95-112%). Our studies reveal a novel sensing pathway for DA through the core-shell structure formation and it is highly promising for the design of efficient biological and environmental sensor.
机译:通过利用装饰在Au纳米颗粒(Au @ N-GQD)上的氮掺杂石墨烯量子点(N-GQDs),开发了一种快速,简便且无标签的传感策略,用于检测实际样品中的多巴胺(DA)。刚生长的Au @ N-GQD在室温下显示出强烈的蓝色荧光,并且在中性介质中存在DA时,荧光强度会急剧淬灭。通过电子显微镜和光谱学研究,在不同条件下仔细监测金纳米颗粒和N-GQD与DA的相互作用的演变,探索了通过Au @ N-GQDs检测DA的机理。在宽范围内对DA的高度灵敏和选择性检测归因于Au @ N-GQD杂种形成的独特核壳结构。猝灭机理涉及基态复合物的形成以及来自N-GQD的电子转移。通过在本检测方案中形成稳定的多巴胺-邻醌(DQ),Au @ N-GQD杂化物中Au NP的存在加快了淬灭过程(比裸N-GQD高出14倍)。荧光猝灭遵循线性Stern-Volmer图,范围为0-100μM,确立了其作为基于荧光的DA传感器的功效,检测限(LOD)430 nM。此外,根据Au @ N-GQD的吸收峰强度随DA浓度的系统变化,引入了著名的希尔方程,用于检测0-10μM范围内的DA,检测限为40 nM。所提出的感测方法对多种常见生物分子以及金属离子具有对DA的高选择性。 Au @ N-GQD荧光强度的猝灭使得可以测定人血清中加标DA的线性范围为0.0至80.0μM,检测限(LOD)590 nM,比低限低27倍。血清中DA的最低异常浓度(16μM)。该感测方案还被成功应用于布拉马普特拉河水样中痕量DA的LOD 480 nM(包括令人满意的回收率(95-112%))。我们的研究揭示了通过核-壳结构形成的DA的新型传感途径,这对于设计有效的生物和环境传感器具有很大的希望。

著录项

  • 来源
    《Applied Surface Science》 |2019年第1期|318-330|共13页
  • 作者单位

    Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, India;

    Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, India;

    Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, India|Indian Inst Technol Guwahati, Ctr Nanotechnol, Gauhati 781039, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号