首页> 外文期刊>Applied Surface Science >Highly sensitive and selective label-free detection of dopamine in human serum based on nitrogen-doped graphene quantum dots decorated on Au nanoparticles: Mechanistic insights through microscopic and spectroscopic studies
【24h】

Highly sensitive and selective label-free detection of dopamine in human serum based on nitrogen-doped graphene quantum dots decorated on Au nanoparticles: Mechanistic insights through microscopic and spectroscopic studies

机译:基于氮掺杂石墨烯量子点在Au纳米粒子上装饰的高敏感和选择性的无碱性的无剂量检测:通过微观和光谱研究的机械洞察

获取原文
获取原文并翻译 | 示例

摘要

A rapid, facile and label-free sensing strategy is developed for the detection of dopamine (DA) in the real samples by exploiting nitrogen-doped graphene quantum dots (N-GQDs) decorated on Au nanoparticles (Au@N-GQD). The as-grown Au@N-GQD exhibits strong blue fluorescence at room temperature and the fluorescence intensity is drastically quenched in presence of DA in neutral medium. The mechanistic insight into the DA sensing by Au@N-GQDs is explored here by careful monitoring of the evolution of the interaction of Au NPs and N-GQDs with DA under different conditions through electron microscopic and spectroscopic studies. The highly sensitive and selective detection of DA over a wide range is attributed to the unique core-shell structure formation with Au@N-GQD hybrids. The quenching mechanism involves the ground state complex formation as well as electron transfer from N-GQDs. The presence of Au NPs in Au@N-GQD hybrids accelerates the quenching process (similar to 14 fold higher than bare N-GQDs) by the formation of stable dopamine-o-quinone (DQ) in the present detection scheme. The fluorescence quenching follows the linear Stern-Volmer plot in the range 0-100 mu M, establishing its efficacy as a fluorescence-based DA sensor with a limit of detection (LOD) 430 nM. Further, based on the systematic change in the intensity of absorption peak of Au@N-GQD with DA concentration, the well-known Hill equation is introduced for the sensing of DA in the range 0-10 mu M with detection limit 40 nM. The proposed sensing method has a high selectivity towards DA over a wide range of common biological molecules as well as metal ions. The quenching in Au@N-GQD fluorescence intensity makes it possible to determine the spiked DA in human serum in the linear range from 0.0 to 80.0 mu M with the limit of detection (LOD) 590 nM, which is similar to 27 fold lower than the lowest abnormal concentration of DA in serum (16 mu M). This sensing scheme is also successively applied to trace DA in Brahmaputra river water sample with LOD 480 nM including its satisfactory recovery (95-112%). Our studies reveal a novel sensing pathway for DA through the core-shell structure formation and it is highly promising for the design of efficient biological and environmental sensor.
机译:通过利用在Au纳米颗粒(Au @ N-GQD)上装饰的氮气掺杂的石墨烯量子点(N-GQD)来开发用于检测真实样品中的多巴胺(DA)的快速,容易和标签的感测策略。生长的Au @ N-GQD在室温下表现出强烈的蓝色荧光,并且在中性介质中存在荧光强度急剧淬火。这里通过在通过电子显微镜和光谱研究的不同条件下仔细监测Au NPS和N-GQDS相互作用的演变来探讨Au @ N-GQDS的DA感测的机械洞察。在宽范围内的高敏感和选择性检测归因于具有AU @ N-GQD杂种的独特核心壳结构。淬火机制涉及地态复合物形成以及来自N-GQD的电子转移。通过在本检测方案中形成稳定的多巴胺-O-醌(DQ),AU @ N-GQD杂种中的Au NPS在Au @ N-GQD杂种中的存在加速了淬火过程(类似于裸N-GQDS的14倍)。荧光猝灭在0-100μm的范围内的线性船尾波动图,将其功效作为基于荧光的DA传感器建立,其具有检测限(LOD)430nm。此外,基于具有DA浓度的Au @ n-gqd的吸收峰强度的系统变化,引入了众所周知的山上方程,用于在0-10μm的范围内的检测限40nm。所提出的传感方法对DA具有高选择性,在各种常见的生物分子以及金属离子上。 Au @ n-gqd荧光强度的猝灭使得可以在线性范围内测定尖刺的DA,其线性范围为0.0至80.0μm,其检测极限(LOD)590nm,其类似于27倍血清中最低异常浓度(16μm)。该传感方案也连续地应用于曲格马普拉河水样品的痕量DA,其中480nm,包括其令人满意的恢复(95-112%)。我们的研究通过核心壳结构形成揭示了DA的新型传感途径,并且对于高效的生物和环境传感器设计具有高度前途。

著录项

  • 来源
    《Applied Surface Science》 |2019年第1期|318-330|共13页
  • 作者单位

    Indian Inst Technol Guwahati Dept Phys Gauhati 781039 India;

    Indian Inst Technol Guwahati Dept Phys Gauhati 781039 India;

    Indian Inst Technol Guwahati Dept Phys Gauhati 781039 India|Indian Inst Technol Guwahati Ctr Nanotechnol Gauhati 781039 India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号