首页> 外文期刊>Applied Surface Science >A numerical study of ultraprecision machining of monocrystalline silicon with laser nano-structured diamond tools by atomistic simulation
【24h】

A numerical study of ultraprecision machining of monocrystalline silicon with laser nano-structured diamond tools by atomistic simulation

机译:激光纳米结构金刚石刀具超精密加工单晶硅的原子模拟数值研究

获取原文
获取原文并翻译 | 示例

摘要

Three-dimension molecular dynamics (MD) simulations is employed to investigate the ultraprecision machining of single crystal silicon with structured nanoscale diamond tool fabricated by laser. The advantages and disadvantages of diamond machining using structured tools are discussed in comparison with those, of using non-structured tools. The von Mises stress distribution, hydrostatic stress distribution, atomic displacement, stress, the radial distribution function, cutting forces, frictional coefficient, subsurface temperature and potential energy during the nanometric machining process are studied. A theoretical analysis model is also established to investigate the subsurface damage mechanism by analyzing the distribution of residual stress during the nanoscale machining process. The results show that a structured nanoscale tool in machining brittle material silicon causes a smaller hydrostatic stress, a less compressive normal stress sigma(xx), and sigma(yy), a lower temperature and a smaller cutting force. However, the structured nanoscale tool machining results in smaller chip volume and more beta-silicon phase. Besides, the friction coefficient for tool with V-shape groove is smaller than those for non-structured tools and other structured nanoscale tools. This means that the tool with V-shape groove can reduce the resistance to cutting during the nanoscale machining process. In addition, the results also point out that the potential energy of subsurface atoms and the number of other atoms for pyramid-structured tool are much smaller than those of using non-structured tools and other structured nanoscale tools. (C) 2016 Elsevier B.V. All rights reserved.
机译:利用三维分子动力学(MD)仿真研究了激光制造的结构化纳米级金刚石工具对单晶硅的超精密加工。与使用非结构化工具进行金刚石加工相比,讨论了使用结构化工具进行金刚石加工的优缺点。研究了纳米加工过程中的冯·米塞斯应力分布,静水应力分布,原子位移,应力,径向分布函数,切削力,摩擦系数,地下温度和势能。建立了理论分析模型,通过分析纳米尺度加工过程中的残余应力分布来研究地下破坏机理。结果表明,在加工脆性材料硅时使用结构化的纳米级刀具可产生较小的静水压力,较小的压缩法向应力sigma(xx)和sigma(yy),较低的温度和较小的切削力。然而,结构化的纳米级工具加工导致较小的芯片体积和更多的β-硅相。此外,具有V形槽的工具的摩擦系数小于非结构化工具和其他结构化纳米级工具的摩擦系数。这意味着具有V形凹槽的工具可以降低纳米加工过程中的切削阻力。此外,结果还指出,金字塔结构工具的表面下原子的势能和其他原子的数量比使用非结构工具和其他结构化纳米尺度工具的势能小得多。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Applied Surface Science》 |2017年第30期|405-416|共12页
  • 作者单位

    Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China|Hunan Univ, Inst Laser Technol, Changsha 410082, Hunan, Peoples R China;

    Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China|Hunan Univ, Inst Laser Technol, Changsha 410082, Hunan, Peoples R China;

    Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China|Hunan Univ, Inst Laser Technol, Changsha 410082, Hunan, Peoples R China;

    Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China;

    Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China|Hunan Univ, Inst Laser Technol, Changsha 410082, Hunan, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Molecular dynamics; Phase transformation; Laser nano-structured diamond tool; Subsurface damage; Ultraprecision machining;

    机译:分子动力学;相变;激光纳米结构金刚石工具;表面损伤;超精密加工;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号