首页> 外文期刊>Applied Superconductivity, IEEE Transactions on >Towards 32-bit Energy-Efficient Superconductor RQL Processors: The Cell-Level Design and Analysis of Key Processing and On-Chip Storage Units
【24h】

Towards 32-bit Energy-Efficient Superconductor RQL Processors: The Cell-Level Design and Analysis of Key Processing and On-Chip Storage Units

机译:迈向32位节能超导RQL处理器:关键处理和片上存储单元的单元级设计和分析

获取原文
获取原文并翻译 | 示例

摘要

New superconductor single flux quantum logics with no static power dissipation in bias resistors, such as Reciprocal Quantum Logic (RQL), offer opportunities to create energy-efficient superconductor processors operating at high frequencies with ultra-low power consumption. This paper discusses the results of our work on the cell-level design and analysis of a benchmark set of 32-/64-bit RQL processor integer and floating-point units such as adders, multipliers, an arithmetic-logic unit, and an array shifter, as well as small 1–4 Kbit RQL on-chip storage components such as register files, on-chip memory, and the top level caches. Our layout-aware design process includes the complete cell-level design and approximate physical layout of the circuits followed by the VHDL simulation, verification, and energy profiling using our RQL VHDL cell library tuned to the future MIT Lincoln Laboratory 10 248 nm process with 10 Nb metal layers and the minimum JJ critical current of 38 . Our designs have the energy efficiency of 1.0 single-precision TFLOPS/W and 0.5 double-precision TFLOPS/W for floating-point units, and 1–24 TOPS/W for 32-bit integer units at room temperature using the cryocooling efficiency of 0.1 (1000 W/W). The 1–4 Kbit 32-/64-bit multi-ported scratchpad memory, register files, write-through and write-back caches designed with RQL Non-Destructive Read-Out storage cells have the average energy consumption of 3.0–9.5 fJ/bit/operation at room temperature using the c- yocooling efficiency of 0.1 . While these results are very promising, more work is needed to evaluate the contribution of the energy costs of instruction scheduling and off-chip main memory access to the energy efficiency of RQL computing across a whole system.
机译:在偏置电阻器中没有静态功耗的新型超导体单通量量子逻辑,例如倒数量子逻辑(RQL),提供了创建高能效,超低功耗的高能效超导体处理器的机会。本文讨论了我们在单元级设计和32位/ 64位RQL处理器整数和浮点单元(例如加法器,乘法器,算术逻辑单元和数组)的基准集的分析工作的结果。移位器以及小型1–4 Kbit RQL片上存储组件,例如寄存器文件,片上存储器和顶级缓存。我们的可感知布局的设计过程包括完整的单元级设计和电路的近似物理布局,然后使用我们的RQL VHDL单元库对VHDL仿真,验证和能量分析进行调整,以适应未来的MIT Lincoln Laboratory 10 248 nm工艺和10 Nb金属层和最小JJ临界电流为38。我们的设计在室温下使用0.1的低温制冷效率,对于浮点单元的能效为1.0单精度TFLOPS / W和0.5的双精度TFLOPS / W,对于32位整数单元的室温为1–24 TOPS / W。 (1000 W / W)。使用RQL无损读出存储单元设计的1–4 Kbit 32- / 64位多端口暂存器存储器,寄存器文件,直写和回写高速缓存的平均能耗为3.0–9.5 fJ /室温下的制冷冷却效率为0.1比特/操作。尽管这些结果令人鼓舞,但还需要做更多的工作来评估指令调度和片外主存储器访问对整个系统RQL计算能效的能耗影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号