首页> 外文期刊>Applied Physics Letters >Gate leakage mechanisms in normally off p-GaN/AlGaN/GaN high electron mobility transistors
【24h】

Gate leakage mechanisms in normally off p-GaN/AlGaN/GaN high electron mobility transistors

机译:常关型p-GaN / AlGaN / GaN高电子迁移率晶体管的栅极泄漏机理

获取原文
获取原文并翻译 | 示例

摘要

In this letter, gate leakage mechanisms in different gate contact normally off p-GaN/AlGaN/GaN high electron mobility transistors (HEMTs) have been studied by the temperature-dependent current-voltage (IG-VG) measurement. It is found that two-dimensional variable range hopping is responsible for gate leakage current at the reverse gate bias and low forward gate bias in both high-leakage and low-leakage Schottky gate contact devices. At high forward gate bias, in the case of high-leakage Schottky contact, the dominant current conduction mechanism is found to be thermionic field emission while it is Poole-Frenkle emission (PFE) for the case of low-leakage Schottky contact and the activation energy of trap states for PFE current is derived as 0.6 eV. Besides, related models are also proposed to describe the gate leakage current in p-GaN gate HEMTs and they match well with the experimental gate leakage current within a wide range of temperatures and gate biases. Published by AIP Publishing.
机译:在这封信中,通过与温度相关的电流-电压(IG-VG)测量,研究了通常在p-GaN / AlGaN / GaN高电子迁移率晶体管(HEMT)之外的不同栅极接触中的栅极泄漏机理。发现在高泄漏和低泄漏肖特基栅极接触器件中,二维可变范围跳变是造成反向栅极偏置和低正向栅极偏置时栅极泄漏电流的原因。在高正向栅极偏置下,对于高泄漏肖特基接触,发现主要的电流传导机制是热电子场发射,而对于低泄漏肖特基接触和激活,其主要是普尔-弗朗克发射(PFE)。 PFE电流的陷阱态能量为0.6 eV。此外,还提出了相关模型来描述p-GaN栅极HEMT中的栅极泄漏电流,并且它们与在宽温度和栅极偏置范围内的实验栅极泄漏电流非常匹配。由AIP Publishing发布。

著录项

  • 来源
    《Applied Physics Letters》 |2018年第15期|152104.1-152104.5|共5页
  • 作者单位

    Univ Sci & Technol China, Sch Nano Technol & Nano Bion, Hefei 230026, Anhui, Peoples R China;

    Chinese Acad Sci, Key Lab Nanodevices & Applicat, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Peoples R China;

    Univ Sci & Technol China, Sch Nano Technol & Nano Bion, Hefei 230026, Anhui, Peoples R China;

    Chinese Acad Sci, Key Lab Nanodevices & Applicat, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Peoples R China;

    Chinese Acad Sci, Key Lab Nanodevices & Applicat, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Peoples R China;

    Chinese Acad Sci, Key Lab Nanodevices & Applicat, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Peoples R China;

    Chinese Acad Sci, Key Lab Nanodevices & Applicat, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Peoples R China;

    Univ Sci & Technol China, Sch Nano Technol & Nano Bion, Hefei 230026, Anhui, Peoples R China;

    Chinese Acad Sci, Key Lab Nanodevices & Applicat, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Peoples R China;

    Enkris Semicond, Suzhou 215123, Peoples R China;

    Chinese Acad Sci, Key Lab Nanodevices & Applicat, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Peoples R China;

    Chinese Acad Sci, Key Lab Nanodevices & Applicat, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号