首页> 外文期刊>Applied Physics Letters >A temperature compensation methodology for piezoelectric based sensor devices
【24h】

A temperature compensation methodology for piezoelectric based sensor devices

机译:用于基于压电的传感器设备的温度补偿方法

获取原文
获取原文并翻译 | 示例

摘要

A temperature compensation methodology comprising a negative temperature coefficient thermistor with the temperature characteristics of a piezoelectric material is proposed to improve the measurement accuracy of piezoelectric sensing based devices. The piezoelectric disk is characterized by using a disk-shaped structure and is also used to verify the effectiveness of the proposed compensation method. The measured output voltage shows a nearly linear relationship with respect to the applied pressure by introducing the proposed temperature compensation method in a temperature range of 25-65 °C. As a result, the maximum measurement accuracy is observed to be improved by 40%, and the higher the temperature, the more effective the method. The effective temperature range of the proposed method is theoretically analyzed by introducing the constant coefficient of the thermistor (B), the resistance of initial temperature (R_0), and the paralleled resistance (R_x). The proposed methodology can not only eliminate the influence of piezoelectric temperature dependent characteristics on the sensing accuracy but also decrease the power consumption of piezoelectric sensing based devices by the simplified sensing structure.
机译:提出了一种包括负温度系数热敏电阻和压电材料温度特性的温度补偿方法,以提高基于压电传感的设备的测量精度。压电盘的特征在于使用盘形结构,并且还用于验证所提出的补偿方法的有效性。通过在25-65°C的温度范围内引入建议的温度补偿方法,测得的输出电压相对于施加的压力显示出几乎线性的关系。结果,观察到最大测量精度提高了40%,并且温度越高,该方法越有效。通过引入热敏电阻的恒定系数(B),初始温度的电阻(R_0)和并联电阻(R_x),从理论上分析了该方法的有效温度范围。所提出的方法不仅可以消除压电温度相关特性对传感精度的影响,而且可以通过简化的传感结构降低基于压电传感的设备的功耗。

著录项

  • 来源
    《Applied Physics Letters》 |2017年第8期|083502.1-083502.5|共5页
  • 作者单位

    Micro Engineering and Micro Systems Laboratory, School of Mechanical Science and Engineering, Jilin University, Changchun, China,Research Center for Ubiquitous MEMS and Micro Engineering, AIST, Tsukuba, Japan;

    Micro Engineering and Micro Systems Laboratory, School of Mechanical Science and Engineering, Jilin University, Changchun, China;

    Micro Engineering and Micro Systems Laboratory, School of Mechanical Science and Engineering, Jilin University, Changchun, China;

    Micro Engineering and Micro Systems Laboratory, School of Mechanical Science and Engineering, Jilin University, Changchun, China;

    Micro Engineering and Micro Systems Laboratory, School of Mechanical Science and Engineering, Jilin University, Changchun, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号