首页> 外文期刊>Applied Physics Letters >Electron mobility in polarization-doped AI_(0-0.2)GaN with a low concentration near 10~(17) cm~(-3)
【24h】

Electron mobility in polarization-doped AI_(0-0.2)GaN with a low concentration near 10~(17) cm~(-3)

机译:在10〜(17)cm〜(-3)附近低浓度的极化掺杂的AI_(0-0.2)GaN中的电子迁移率

获取原文
获取原文并翻译 | 示例
           

摘要

In this letter, carrier transport in graded Al_xGa_(1_x)N with a polarization-induced n-type doping as low as ~10~(17)cm~(-3) is reported. The graded Al_xGa_(1-x)N is grown by metal organic chemical vapor deposition on a sapphire substrate, and a uniform n-type doping without any intentional doping is realized by linearly varying the AI composition from 0% to 20% over a thickness of 600 nm. A compensating center concentration of ~10~(17)cm~(_3) was also estimated. A peak mobility of 900 cm2/ V•s at room temperature is extracted at an Al composition of which represents the highest mobility achieved in n-Al_(0.07)GaN with a carrier concentration of ~10~(17)cm~(--3). A comparison between experimental data and theoretical models shows that, at this low doping concentration, both dislocation scattering and alloy scattering are significant in limiting electron mobility and that a dislocation density of <10~7cm~(-2) is necessary to optimize mobility near 10~(16)cm~(-3). The findings in this study provide insights into key elements for achieving high mobility at low doping levels in GaN, a critical parameter in the design of novel power electronics taking advantage of polarization doping,
机译:在这封信中,报道了在极化诱导的n型掺杂低至〜10〜(17)cm〜(-3)的梯度Al_xGa_(1_x)N中的载流子传输。通过在蓝宝石衬底上进行金属有机化学气相沉积来生长渐变的Al_xGa_(1-x)N,并且通过在整个厚度上将AI组成从0%线性变化到20%,实现无任何故意掺杂的均匀n型掺杂。 600纳米还估计了约10〜(17)cm〜(_3)的补偿中心浓度。在Al组成下提取了室温下900 cm2 / V•s的峰值迁移率,它表示在载流子浓度为〜10〜(17)cm〜(-的n-Al_(0.07)GaN中实现的最高迁移率3)。实验数据和理论模型之间的比较表明,在这种低掺杂浓度下,位错散射和合金散射都在限制电子迁移率方面很显着,并且位错密度<10〜7cm〜(-2)对于优化附近的迁移率是必需的。 10〜(16)cm〜(-3)。这项研究的发现为GaN中低掺杂水平实现高迁移率的关键元素提供了见解,而GaN是利用极化掺杂来设计新型功率电子器件的关键参数,

著录项

  • 来源
    《Applied Physics Letters》 |2017年第18期|182102.1-182102.5|共5页
  • 作者单位

    SchooI of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA , Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA;

    Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA;

    SchooI of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA , Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA;

    SchooI of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA;

    SchooI of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA;

    IQE LLC, 265 Davidson Avenue, Somerset, New Jersey, 08873, USA;

    IQE LLC, 265 Davidson Avenue, Somerset, New Jersey, 08873, USA;

    SchooI of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA , Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA , Department of Materials Science and Technology, Cornell University, Ithaca, New York 14853, USA , Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, USA;

    SchooI of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA , Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA , IQE LLC, 265 Davidson Avenue, Somerset, New Jersey, 08873, USA , Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号