首页> 外文期刊>Applied numerical mathematics >Numerical analysis and applications of explicit high order maximum principle preserving integrating factor Runge-Kutta schemes for Allen-Cahn equation
【24h】

Numerical analysis and applications of explicit high order maximum principle preserving integrating factor Runge-Kutta schemes for Allen-Cahn equation

机译:Allen-CAHN方程的显式高阶最大原理保留积分因子Runge-Kutta方案的数值分析与应用

获取原文
获取原文并翻译 | 示例

摘要

Whether high order temporal integrators can preserve the maximum principle of Allen-Cahn equation has been an open problem in recent years. This work provides a positive answer by designing and analyzing a class of up to fourth order maximum principle preserving integrators for the Allen-Cahn equation. First, the second order finite difference discretization is applied to the Allen-Cahn equation in the space direction. The obtained semi-discrete system also preserves the maximum principle and the energy dissipation law. Then the fully discrete numerical scheme is obtained by applying the Lawson transformation and the Runge-Kutta integration in the time direction. We define sufficient conditions for explicit integration factor Runge-Kutta scheme to preserve the maximum principle, namely, the Shu-Osher form of the underlying Runge-Kutta scheme has non-negative coefficients α _(i,j), nondecreasing abscissas C_i and the time step size τ > 0 satisfies τ { β _(i,j/α _(i,j} ∈ [-4, 1/2]. We prove that the proposed method is convergent with order O(τ~p +h~2) in the discrete L~∞ norm. A fast solver is then applied to the discrete system to accelerate numerical computations. Various experiments for 1D, 2D and 3D problems are provided to illustrate the high-order convergence and maximum principle preserving of the proposed algorithms over a long time and verify the theoretical analysis.
机译:高阶时间集成商是否可以保留艾伦 - CAHN方程的最大原则近年来一直是一个公开问题。这项工作通过设计和分析一类最多的第四个订单最大原理保留集成商来提供积极的答案,为Allen-CAHN方程提供了积极的集成商。首先,将二阶有限差分离散化应用于空间方向上的艾伦-CAHN方程。获得的半离散系统还保留了最大原则和能量耗散法。然后通过在时间方向上应用Lawson转换和Runge-Kutta集成来获得完全离散的数值方案。我们为显式积分因子Runge-Kutta方案定义了足够的条件,以保持最大原理,即底层跳动-Kutta方案的Shu-Osher形式具有非负系数α_(i,j),nondecreasing abscissas c_i和时间步长τ> 0满足τ{β_(i,j /α_(i,j}∈[-4,1/2]。我们证明了所提出的方法是用o(τ〜p + h 〜2)在离散L〜∞规范中。然后将快速求解器应用于离散系统以加速数值计算。提供了用于1D,2D和3D问题的各种实验,以说明高阶收敛和最大原理保留提出的算法长时间并验证了理论分析。

著录项

  • 来源
    《Applied numerical mathematics》 |2021年第3期|372-390|共19页
  • 作者单位

    Department of Mathematics National University of Defense Technology Changsha 410073 China;

    Department of Mathematics National University of Defense Technology Changsha 410073 China Department of Mathematics National University of Singapore 119076 Singapore;

    Department of Mathematics National University of Defense Technology Changsha 410073 China;

    Department of Mathematics National University of Defense Technology Changsha 410073 China State Key Laboratory of High Performance Computing National University of Defense Technology Changsha 410073 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Allen-Cahn equation; Maximum principle preserving scheme; Integrating factor Runge-Kutta scheme; Energy dissipation;

    机译:艾伦-CAHN方程;最大原理保存方案;集成因子runge-kutta方案;能量耗散;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号