首页> 外文期刊>Applied numerical mathematics >Computing eigenvalues and eigenfunctions of the Laplacian for convex polygons
【24h】

Computing eigenvalues and eigenfunctions of the Laplacian for convex polygons

机译:计算凸多边形的拉普拉斯算子的特征值和特征函数

获取原文
获取原文并翻译 | 示例

摘要

Recently a new transform method, called the Unified Transform or the Fokas method, for solving boundary value problems (BVPs) for linear and integrable nonlinear partial differential equations (PDEs) has received a lot of attention. For linear elliptic PDEs. this method yields two equations, known as the global relations, coupling the Dirichlet and Neumann boundary values. These equations can be used in a collocation method to determine the Dirichlet to Neumann map. This involves expanding the unknown functions in terms of a suitable basis, and choosing a set of collocation points at which to evaluate the global relations. Here, using these methods for the Helmholtz and modified Helmholtz equations and following the earlier results of [15], we determine eigenvalues of the Laplacian in a convex polygon. Eigenvalues are characterised by the points where the generalised Dirichlet to Neumann map becomes singular. We find that the method yields spectral convergence for eigenfunctions smooth on the boundary and for non-smooth boundary values, the rate of convergence is determined by the rate of convergence of expansions in the chosen Legendre basis. Extensions to the case of oblique derivative boundary conditions and constant coefficient elliptic PDEs are also discussed and demonstrated.
机译:最近,一种新的变换方法,称为统一变换或Fokas方法,用于解决线性和可积分非线性偏微分方程(PDE)的边值问题(BVP),已引起了广泛关注。用于线性椭圆形PDE。该方法产生两个方程,称为全局关系,耦合Dirichlet和Neumann边界值。这些方程式可用于搭配方法以确定从Dirichlet到Neumann的图。这涉及在适当的基础上扩展未知功能,并选择一组搭配点以评估全局关系。在这里,将这些方法用于Helmholtz和修正的Helmholtz方程,并根据[15]的早期结果,我们确定凸多边形中Laplacian的特征值。特征值的特征是广义Dirichlet到Neumann映射变为奇异的点。我们发现,该方法对边界上光滑的本征函数和非光滑边界值产生谱收敛,收敛速度取决于在勒让德基础上展开的收敛速度。还讨论并证明了对斜导数边界条件和常数系数椭圆PDE的扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号