首页> 外文会议>International Congress of Mathematicians >Convex optimization of graph Laplacian eigenvalues
【24h】

Convex optimization of graph Laplacian eigenvalues

机译:图Laplacian特征值的凸优化

获取原文

摘要

We consider the problem of choosing the edge weights of an undirected graph so as to maximize or minimize some function of the eigenvalues of the associated Laplacian matrix, subject to some constraints on the weights, such as nonnegativity, or a given total value. In many interesting cases this problem is convex, i.e., it involves minimizing a convex function (or maximizing a concave function) over a convex set. This allows us to give simple necessary and sufficient optimality conditions, derive interesting dual problems, find analytical solutions in some cases, and efficiently compute numerical solutions in all cases. In this overview we briefly describe some more specific cases of this general problem, which have been addressed in a series of recent papers. · Fastest mixing Markov chain. Find edge transition probabilities that give the fastest mixing (symmetric, discrete-time) Markov chain on the graph. · Fastest mixing Markov process. Find the edge transition rates that give the fastest mixing (symmetric, continuous-time) Markov process on the graph. · Absolute algebraic connectivity. Find edge weights that maximize the algebraic connectivity of the graph (i.e., the smallest positive eigenvalue of its Laplacian matrix). The optimal value is called the absolute algebraic connectivity by Fiedler. · Minimum total effective resistance. Find edge weights that minimize the total effective resistance of the graph. This is same as minimizing the average commute time from any node to any other, in the associated Markov chain. · Fastest linear averaging. Find weights in a distributed averaging network that yield fastest convergence. · Least steady-state mean-square deviation. Find weights in a distributed averaging network, driven by random noise, that minimizes the steady-state mean-square deviation of the node values.
机译:我们考虑选择无向图的边缘重量的问题,以便最大化或最小化相关拉普拉斯矩阵的特征值的某些功能,受到对权重的一些约束,例如非空中性,或给定的总值。在许多有趣的情况下,该问题是凸,即,它涉及在凸集上最小化凸起函数(或最大化凹函数)。这使我们能够提供简单的必要和足够的最优性条件,导出有趣的双重问题,在某些情况下找到分析解决方案,并有效地计算所有情况下的数值解决方案。在这一概述中,我们简要描述了这一般问题的一些更具体的案例,这些问题已经在一系列近期论文中得到了解决。 ·最快混合马尔可夫链。查找边缘过渡概率,提供图形上最快的混合(对称,离散时间)Markov链。 ·最快的混合马尔可夫过程。找到在图中提供最快混合(对称,连续时间)Markov过程的边缘过渡速率。 ·绝对代数连接。找到最大化图形的代数连接的边缘权重(即,它的Laplacian矩阵的最小正面特征值)。最佳值称为Fiedler的绝对代数连接。 ·最小总有效性。找到最小化图表的总有效电阻的边缘权重。这与在关联的马尔可夫链中的任何节点中的平均通勤时间最小化相同。 ·最快的线性平均。在分布式平均网络中查找权重,其产生最快的收敛性。 ·最小稳态均方偏差。通过随机噪声驱动,在分布式平均网络中找到权重,从而最大限度地减少节点值的稳态平均方偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号