首页> 外文期刊>Applied Mathematical Modelling >Global sensitivity analysis for multivariate outputs using polynomial chaos-based surrogate models
【24h】

Global sensitivity analysis for multivariate outputs using polynomial chaos-based surrogate models

机译:使用基于多项式混沌的替代模型对多元输出进行全局敏感性分析

获取原文
获取原文并翻译 | 示例

摘要

We propose an efficient global sensitivity analysis method for multivariate outputs that applies polynomial chaos-based surrogate models to vector projection-based sensitivity indices. These projection-based sensitivity indices, which are powerful measures of the comprehensive effects of model inputs on multiple outputs, are conventionally estimated by the Monte Carlo simulations that incur prohibitive computational costs for many practical problems. Here, the projection-based sensitivity indices are efficiently estimated via two polynomial chaos-based surrogates: polynomial chaos expansion and a proper orthogonal decomposition-based polynomial chaos expansion. Several numerical examples with various types of outputs are tested to validate the proposed method; the results demonstrate that the polynomial chaos-based surrogates are more efficient than Monte Carlo simulations at estimating the sensitivity indices, even for models with a large number of outputs. Furthermore, for models with only a few outputs, polynomial chaos expansion alone is preferable, whereas for models with a large number of outputs, implementation with proper orthogonal decomposition is the best approach.
机译:我们为多元输出提出了一种有效的全局灵敏度分析方法,该方法将基于多项式混沌的替代模型应用于基于矢量投影的灵敏度指标。这些基于投影的敏感度指标是模型输入对多个输出的综合影响的有力衡量标准,通常由蒙特卡洛模拟进行估算,这会给许多实际问题带来过高的计算成本。在这里,基于投影的敏感度指数是通过两个基于多项式混沌的代用品有效地估算的:多项式混沌展开和适当的基于正交分解的多项式混沌展开。测试了具有各种类型输出的几个数值示例,以验证所提出的方法;结果表明,即使对于具有大量输出的模型,基于多项式混沌的替代方法在估计灵敏度指标方面也比Monte Carlo模拟更有效。此外,对于只有少量输出的模型,最好仅使用多项式混沌扩展,而对于具有大量输出的模型,采用适当的正交分解实现是最好的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号