首页> 外文期刊>Journal of Computational Physics >Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation
【24h】

Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation

机译:基于ANOVA和稀疏多项式维分解的自适应替代模型,用于流体模拟中的全局灵敏度分析

获取原文
获取原文并翻译 | 示例
       

摘要

The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable for real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap metamodel (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients. (C) 2016 Elsevier Inc. All rights reserved.
机译:在这项工作中,采用多项式维分解(PDD)进行具有中度到大量输入随机变量的随机系统的全局灵敏度分析和不确定性量化(UQ)。由于PDD与方差分析(ANOVA)方法之间的紧密联系,与多项式混沌扩展(PC)相比,PDD能够提供更简单,更直接的Sobol灵敏度指标评估。不幸的是,PDD项的数量相对于输入随机向量的大小呈指数增长,这使得标准方法的计算成本无法满足实际工程应用的需求。为了解决维数诅咒的问题,这项工作提出了本质上基于方差的自适应策略,旨在通过采用稀疏PDD方法及其系数通过回归计算来构建便宜的元模型(即替代模型)。本文进行了三个级别的适应性调整:1)ANOVA分量函数的截断维数; 2)主动维技术,尤其是用于二阶和高阶参数交互作用的方法;以及3)逐步回归方法,仅保留了PDD扩展中最有影响力的多项式。在以逐步回归为特征的自适应过程中,替代模型表示中包含的项很少,因此重复求解最小二乘回归问题的线性系统的成本可以忽略不计。最终获得的稀疏PDD表示的大小比完整扩展的小得多,因为最终仅保留了重要的项。因此,计算最终PDD系数所需的对确定性模型的调用要少得多。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号