首页> 外文期刊>Applied Artificial Intelligence >A Novel Method of Curve Fitting Based on Optimized Extreme Learning Machine
【24h】

A Novel Method of Curve Fitting Based on Optimized Extreme Learning Machine

机译:基于优化的极限学习机的曲线拟合方法

获取原文
获取原文并翻译 | 示例

摘要

In this article, we present a new method based on extreme learning machine (ELM) algorithm for solving nonlinear curve fitting problems. Curve fitting is a computational problem in which we seek an underlying target function with a set of data points given. We proposed that the unknown target function is realized by an ELM with introducing an additional linear neuron to correct the localized behavior caused by Gaussian type neurons. The number of hidden layer neurons of ELM is a crucial factor to achieve a good performance. An evolutionary computation algorithm-particle swarm optimization (PSO) technique is applied to determine the optimal number of hidden nodes. Several numerical experiments with benchmark datasets, simulated spectral data and measured data from high energy physics experiments have been conducted to test the proposed method. Accurate fitting has been accomplished for various tough curve fitting tasks. Comparing with the results of other methods, the proposed method outperforms the traditional numerical-based technique. This work clearly demonstrates that the classical numerical analysis problem-curve fitting can be satisfactorily resolved via the approach of artificial intelligence.
机译:在本文中,我们提出了一种基于极端学习机(ELM)算法的新方法,用于解决非线性曲线拟合问题。曲线拟合是一种计算问题,其中我们寻求具有给定的一组数据点的底层目标函数。我们提出了通过引入额外的线性神经元来实现未知的目标功能,以校正高斯型神经元引起的局部行为。榆树的隐藏层神经元数是实现良好性能的关键因素。应用进化计算算法粒子群优化(PSO)技术来确定隐藏节点的最佳数量。已经进行了几种具有基准数据集,模拟光谱数据和来自高能物理实验的测量数据的数值实验以测试所提出的方法。为各种艰难的曲线配件任务完成了准确的拟合。与其他方法的结果相比,该方法优于传统的基于数值的技术。这项工作清楚地表明,通过人工智能方法可以令人满意地解决古典数值分析问题曲线拟合。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2020年第14期|849-865|共17页
  • 作者

    Li Michael; Li Lily D.;

  • 作者单位

    CQUniv CIS Rockhampton Qld 4702 Australia|CQUniv Sch Engn & Technol Rockhampton Qld 4702 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号