首页> 外文学位 >Evaluating Machine Learning Methods: scored Receiver Operating Characteristics (sROC) Curves.
【24h】

Evaluating Machine Learning Methods: scored Receiver Operating Characteristics (sROC) Curves.

机译:评估机器学习方法:评分接收器工作特性(sROC)曲线。

获取原文
获取原文并翻译 | 示例

摘要

This thesis addresses evaluation methods used to measure the performance of machine learning algorithms. In supervised learning, algorithms are designed to perform common learning tasks including classification, ranking, scoring, and probability estimation. This work investigates how information, produced by these various learning tasks, can be utilized by the performance evaluation measure. In the literature, researchers recommend evaluating classification and ranking tasks using the Receiver Operating Characteristics (ROC) curve. In a scoring task, the learning model estimates scores, from the training data, and assigns them to the testing data. These scores are used to express class memberships. Sometimes, these scores represent probabilities in which case the Mean Squared Error (Brier Score) is used to measure their quality. However, if these scores are not probabilities, the task is reduced to a ranking or a classification task by ignoring them. The standard ROC curve also eliminates such scores from its analysis.;Our experiments demonstrate that the scored ROC curve is capable of measuring similarities as well as differences in the performance of different learning models, and is more sensitive to them than the standard ROC curve. In addition, we illustrate our method's ability to detect changes in data distribution between training and testing.;We claim that using non-probabilistic scores as probabilities is often incorrect, and doing it properly would mean imposing additional assumptions on the algorithm or on the data. Ignoring these scores fully, however, is also problematic since, in practice, although they may provide a poor estimate of probabilities, their magnitudes, nonetheless, provide information that can be valuable for performance analysis. The purpose of this dissertation is to propose a novel method that extends the ROC curve to include such scores. We, therefore, call it the scored ROC curve. In particular, we develop a method to construct a scored ROC curve, demonstrate how to reduce it to a standard ROC curve, and illustrate how it can be used to compare learning models.
机译:本文提出了用于评估机器学习算法性能的评估方法。在监督学习中,算法被设计为执行常见的学习任务,包括分类,排名,评分和概率估计。这项工作研究了绩效评估方法如何利用这些各种学习任务所产生的信息。在文献中,研究人员建议使用接收器工作特性(ROC)曲线评估分类和排名任务。在评分任务中,学习模型根据训练数据估算分数,并将其分配给测试数据。这些分数用于表达班级成员资格。有时,这些分数代表概率,在这种情况下,均方误差(障碍分数)用于衡量其质量。但是,如果这些分数不是概率,则通过忽略它们将任务简化为排名或分类任务。标准ROC曲线也从其分析中消除了此类得分。;我们的实验表明,评分的ROC曲线能够测量不同学习模型的性能的相似性和差异,并且比标准ROC曲线对它们更敏感。此外,我们还展示了我们的方法能够检测出训练和测试之间数据分布变化的能力。;我们声称使用非概率评分作为概率通常是不正确的,并且正确地进行操作将意味着对算法或数据施加额外的假设。但是,完全忽略这些分数也是有问题的,因为在实践中,尽管它们可能无法很好地估计概率,但是它们的大小仍然可以提供对性能分析有价值的信息。本文的目的是提出一种新颖的方法来扩展ROC曲线以包括此类得分。因此,我们称其为ROC得分曲线。特别是,我们开发了一种方法来构造带分数的ROC曲线,演示如何将其缩小为标准ROC曲线,并说明如何将其用于比较学习模型。

著录项

  • 作者

    Klement, William.;

  • 作者单位

    University of Ottawa (Canada).;

  • 授予单位 University of Ottawa (Canada).;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号