首页> 外文期刊>Geoscience and Remote Sensing Letters, IEEE >Fusion of Extreme Learning Machine and Graph-Based Optimization Methods for Active Classification of Remote Sensing Images
【24h】

Fusion of Extreme Learning Machine and Graph-Based Optimization Methods for Active Classification of Remote Sensing Images

机译:极限学习机与基于图的优化方法的融合

获取原文
获取原文并翻译 | 示例

摘要

In this letter, we propose an efficient multiclass active learning (AL) method for remote sensing image classification. We fuse the capabilities of an extreme learning machine (ELM) classifier and graph-based optimization methods to boost the classification accuracy while minimizing the user interaction. First, we use the ELM to generate an initial label estimation of the unlabeled image pixels. Then, we optimize a graph-based functional energy that integrates the ELM outputs as an initial estimation of the image structure. As for the ELM, the solution to this multiclass optimization problem leads to a system of linear equations. Due to the sparse Laplacian matrix built from the lattice graph defined on the image pixels, the optimization problem is solved in a linear time. In the experiments, we report and discuss the results of the proposed AL method on two very high resolution images acquired by IKONOS-2 and GoeEye-1, as well as the well-known Pavia University hyperspectral image.
机译:在这封信中,我们提出了一种用于遥感图像分类的有效多类主动学习(AL)方法。我们将极限学习机(ELM)分类器和基于图的优化方法的功能融合在一起,以提高分类准确性,同时最大程度地减少用户交互。首先,我们使用ELM生成未标记图像像素的初始标记估计。然后,我们优化基于图的功能能量,该能量将ELM输出集成为图像结构的初始估计。至于ELM,针对此多类优化问题的解决方案导致了线性方程组。由于根据在图像像素上定义的晶格图构建了稀疏的拉普拉斯矩阵,因此可以在线性时间内解决优化问题。在实验中,我们报告并讨论了拟议的AL方法在IKONOS-2和GoeEye-1采集的两张非常高分辨率的图像以及著名的帕维亚大学高光谱图像上的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号