首页> 外文期刊>Applied and Computational Harmonic Analysis >Bi-framelet systems with few vanishing moments characterize Besov spaces
【24h】

Bi-framelet systems with few vanishing moments characterize Besov spaces

机译:几乎没有消失的双框架系统成为Besov空间的特征

获取原文
获取原文并翻译 | 示例

摘要

We study the approximation properties of wavelet bi-frame systems in L_p (R_d). For wavelet bi-frame systems the approximation spaces associated with best m-term approximation are completely characterized for a certain range of smoothness parameters limited by the number of vanishing moments of the generators of the dual frame. The approximation spaces turn out to be essentially Besov spaces, just as in the classical orthonormal wavelet case. We also prove that for smooth functions, the canonical expansion in the wavelet bi-frame system is sparse and one can reach the optimal rate of approximation by simply thresholding the canonical expansion. For twice oversampled MRA based wavelet frames, a characterization of the associated approximation space is obtained without any restrictions given by the number of vanishing moments, but at a price of replacing the canonical expansion by another linear expansion.
机译:我们研究了小波双帧系统在L_p(R_d)中的逼近性质。对于小波双帧系统,对于某些受双帧发生器消失力矩限制的平滑度参数,可以完全表征与最佳m项近似相关的近似空间。近似空间实际上是Besov空间,就像经典正交小波的情况一样。我们还证明,对于平稳函数,小波双帧系统中的典范展开是稀疏的,并且仅通过对典范展开进行阈值就可以达到最佳逼近率。对于基于两次过采样的基于MRA的小波帧,可以获得相关联的近似空间的特征,而不受消失矩数量的任何限制,但是代价是用另一个线性扩展代替规范扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号