首页> 外文期刊>IEEE Transactions on Antennas and Propagation >Calculation of CFIE impedance matrix elements with RWG and n/spl times/RWG functions
【24h】

Calculation of CFIE impedance matrix elements with RWG and n/spl times/RWG functions

机译:使用RWG和n / spl times / RWG函数计算CFIE阻抗矩阵元素

获取原文
获取原文并翻译 | 示例

摘要

The method of moments (MoM) solution of combined field integral equation (CFIE) for electromagnetic scattering problems requires calculation of singular double surface integrals. When Galerkin's method with triangular vector basis functions, Rao-Wilton-Glisson functions, and the CFIE are applied to solve electromagnetic scattering by a dielectric object, both RWG and n/spl times/RWG functions (n is normal unit vector) should be considered as testing functions. Robust and accurate methods based on the singularity extraction technique are presented to evaluate the impedance matrix elements of the CFIE with these basis and test functions. In computing the impedance matrix elements, including the gradient of the Green's function, we can avoid the logarithmic singularity on the outer testing integral by modifying the integrand. In the developed method, all singularities are extracted and calculated in closed form and numerical integration is applied only for regular functions. In addition, we present compact iterative formulas for computing the extracted terms in closed form. By these formulas, we can extract any number of terms from the singular kernels of CFIE formulations with RWG and n/spl times/RWG functions.
机译:用于电磁散射问题的组合场积分方程(CFIE)的矩法(MoM)解需要计算奇异的双表面积分。当采用具有三角矢量基函数的Galerkin方法,Rao-Wilton-Glisson函数和CFIE来解决介电物体的电磁散射时,应同时考虑RWG和n / spl times / RWG函数(n是法向单位矢量)作为测试功能。提出了基于奇异性提取技术的鲁棒且准确的方法,以利用这些基础和测试功能来评估CFIE的阻抗矩阵元素。在计算阻抗矩阵元素(包括格林函数的梯度)时,我们可以通过修改被积数来避免外部测试积分的对数奇异性。在开发的方法中,所有奇异点都以封闭形式提取和计算,并且数值积分仅适用于常规函数。此外,我们提出了紧凑的迭代公式,用于以封闭形式计算提取的项。通过这些公式,我们可以从具有RWG和n / spl times / RWG函数的CFIE公式的奇异内核中提取任意数量的项。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号