首页> 外文期刊>Annals of Operations Research >Using parallel & distributed computing for real-time solving of vehicle routing problems with stochastic demands
【24h】

Using parallel & distributed computing for real-time solving of vehicle routing problems with stochastic demands

机译:使用并行和分布式计算实时解决具有随机需求的车辆路径问题

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on the Vehicle Routing Problem with Stochastic Demands (VRPSD) and discusses how Parallel and Distributed Computing Systems can be employed to efficiently solve the VRPSD. Our approach deals with uncertainty in the customer demands by considering safety stocks, i.e. when designing the routes, part of the vehicle capacity is reserved to deal with potential emergency situations caused by unexpected demands. Thus, for a given VRPSD instance, our algorithm considers different levels of safety stocks. For each of these levels, a different scenario is defined. Then, the algorithm solves each scenario by integrating Monte Carlo simulation inside a heuristic-randomization process. This way, expected variable costs due to route failures can be naturally estimated even when customers' demands follow a non-normal probability distribution. Use of parallelization strategies is then considered to run multiple instances of the algorithm in a concurrent way. The resulting concurrent solutions are then compared and the one with the minimum total costs is selected. Two numerical experiments allow analyzing the algorithm's performance under different parallelization schemas.
机译:本文关注具有随机需求的车辆路径问题(VRPSD),并讨论如何使用并行和分布式计算系统来有效解决VRPSD。我们的方法通过考虑安全库存来解决客户需求中的不确定性,即在设计路线时,保留部分车辆容量以应对意外需求导致的潜在紧急情况。因此,对于给定的VRPSD实例,我们的算法考虑了不同级别的安全库存。对于每个级别,都定义了不同的方案。然后,该算法通过在启发式随机化过程中集成Monte Carlo仿真来解决每种情况。这样,即使客户的需求遵循非正态概率分布,也可以自然地估算出由于路线故障导致的预期可变成本。然后考虑使用并行化策略以并行方式运行算法的多个实例。然后比较最终的并发解决方案,并选择总成本最低的解决方案。两个数值实验可以分析算法在不同并行化方案下的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号