...
首页> 外文期刊>Annals of nuclear energy >Uncertainty assessment on the calculated decay heat of the ASTRID basic design core based on the DARWIN-2.3 package
【24h】

Uncertainty assessment on the calculated decay heat of the ASTRID basic design core based on the DARWIN-2.3 package

机译:基于DARWIN-2.3封装的ASTRID基本设计核心计算衰减热的不确定度评估

获取原文
获取原文并翻译 | 示例
           

摘要

A good knowledge of the decay heat of the various elements of the core (fissile and fertile zones, structures, sodium…) as well as the associated uncertainties is critical for the safe operation of a nuclear facility, but also at the design stage as in the case of the ASTRID technological demonstrator. For this reactor, the amount of decay heat is all the more important as it will strongly impact the design of the dedicated EPur (Evacuation de la PUissance Résiduelle = disposal of the decay heat) system.The uncertainties on the decay heat calculations of a sodium fast rector that are currently used at CEA were defined several decades ago and are now considered very conservative, because of the method that was used in their evaluation. They may thus be penalizing for the design and operation of ASTRID. These past uncertainty assessments were based on a semi-empirical approach - a combination of physical considerations and experimental results - and on calculations using conservative methods and obsolete nuclear data libraries that need to be updated.We have used up-to-date calculation tools in order to reduce these uncertainties: ERANOS-2.2 for the neutronic calculations and DARWIN-2.3 for the depletion calculations. The uncertainty on the decay heat is estimated with the CYRUS tool, which performs the propagation of all the relevant nuclear data uncertainties (decay constants, branching ratios, cross sections, independent fission yields). For some parameters, we have completed the JEFF-3.1.1 uncertainties database with values from other nuclear data libraries, for instance the branching ratio for the decay of137gCs to137mBa, of90gKr to90gRb and the branching ratio for the capture of241gAm to242gAm.The resulting 1σ uncertainty on the decay heat calculation never exceeds 2.6%, which shows a major improvement compared to the previous uncertainty evaluation that could reach 6.6%. Additional sources of uncertainties will have to be considered in the future in order to evaluate the full uncertainty on decay heat calculations: the reactor operation conditions variations, the accuracy of the nominal power measurement and the uncertainty on the neutron flux calculated with the new APOLLO3® code system, which will be dedicated to the ASTRID neutronic calculations.
机译:充分了解堆芯各个元素(易裂变和富集区,结构,钠等)的衰变热以及相关的不确定性,对于核设施的安全运行至关重要,但在设计阶段(如以ASTRID技术演示者为例。对于此反应堆来说,衰减热量的数量更为重要,因为它将严重影响专用EPur(Evacuation de la PUissanceRésiduelle=衰减热量的处置)系统的设计。钠的衰减热量计算的不确定性CEA当前使用的快速记录器是几十年前定义的,由于其评估中使用的方法,现在被认为非常保守。因此,它们可能会对ASTRID的设计和操作造成不利影响。这些过去的不确定性评估基于半经验方法-物理考虑因素和实验结果的结合-以及使用保守方法和需要更新的过时核数据库进行的计算。我们使用了最新的计算工具为了减少这些不确定性:ERANOS-2.2用于中子计算和DARWIN-2.3用于损耗计算。 CYRUS工具估算了衰变热的不确定性,该工具执行所有相关核数据不确定性的传播(衰变常数,分支比,横截面,独立裂变产率)。对于某些参数,我们已经使用来自其他核数据库的值完成了JEFF-3.1.1不确定性数据库,例如137gCs到137mBa的衰变的分支比,90gKr到90gRb的衰变的分支比以及241gAm到242gAm的捕获的分支比。结果是1σ不确定性衰减热量的计算从未超过2.6%,与之前的不确定性评估(可能达到6.6%)相比,这显示出重大改进。为了评估衰减热计算的全部不确定性,将来必须考虑其他不确定性来源:反应堆运行条件的变化,标称功率测量的准确性以及使用新型APOLLO3®计算出的中子通量的不确定性代码系统,它将专用于ASTRID中子学计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号