首页> 外文期刊>Algorithmica >Space-Efficient DFS and Applications to Connectivity Problems: Simpler, Leaner, Faster
【24h】

Space-Efficient DFS and Applications to Connectivity Problems: Simpler, Leaner, Faster

机译:节省空间的DFS和应用于连接问题:更简单,更瘦,更快

获取原文
获取原文并翻译 | 示例

摘要

Abstract The problem of space-efficient depth-first search (DFS) is reconsidered. A particularly simple and fast algorithm is presented that, on a directed or undirected input graph G=(V,E)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$G=(V,E)$$end{document} with n vertices and m edges, carries out a DFS in O(n+m)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$O(n+m)$$end{document} time with n+∑v∈V≥3⌈log2(dv-1)⌉+O(logn)≤n+m+O(logn)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$n+sum _{vin V_{ge 3}}lceil log _2(d_v-1)ceil +O(log n)le n+m+O(log n)$$end{document} bits of working memory, where dvdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$d_v$$end{document} is the (total) degree of v, for each v∈Vdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$vin V$$end{document}, and V≥3={v∈V∣dv≥3}documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$V_{ge 3}={vin Vmid d_vge 3}$$end{document}. A slightly more complicated variant of the algorithm works in the same time with at most n+(4/5)m+O(logn)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$n+({4/5})m+O(log n)$$end{document} bits. It is also shown that a DFS can be carried out in a graph with n vertices and m edges in O(n+m+min{n,m}log∗n)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$O(n+m+min {n,m}log ^*!n)$$end{document} time with O(n) bits or in O(n+m)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$O(n+m)$$end{document} time with either O(nloglog(4+m))documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$O(nlog log (4+{m}))$$end{document} bits or, for arbitrary integer k≥1documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$kge 1$$end{document}, O(nlog(k)n)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$O(nlog ^{(k)}! n)$$end{document} bits. These results among them subsume or improve most earlier results on space-efficient DFS. Some of the new time and space bounds are shown to extend to applications of DFS such as the computation of cut vertices, bridges, biconnected components and 2-edge-connected components in undirected graphs.
机译:摘要重新考虑了节省空间深度第一搜索(DFS)的问题。提出了一种特别简单且快速的算法,在指向或无向输入图G =(v,e) documentClass [12pt]上[12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage { amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsidemargin} { - 69pt} begin {document} $$ g =(v,e)$$ end {document}用n顶点和M边缘,执行O(n + m) documentclass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsidemargin} { - 69pt} begin {document} $$ o(n + m)$$ o(n + m)$$ end {document}时间与n +σv∈v≥3⌈log2 (DV-1)⌉+ o(logn)≤n+ m + o(logn) documentclass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsidemargin} {-69pt} begin {document} $$ n + sum _ {v in v _ { ge 3}} lceil log _2 (d_v-1) RCEI l + o( log n) le n + m + o( log n)$$ end {document}位工作内存,其中dv documentclass [12pt] {minimal} usepackage {ammath} usepackage { isysym} usepackage {amsfonts} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsideDemargin} { - 69pt} begin {document} $$ d_v $$$$ {文档}是v的(总计)v,对于每个v∈v documentclass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsidemargin} {-69pt} begin {document} $$ v v v $$ neg {document},v≥3= {v∈vμdv≥ 3} documentClass [12pt] {minimal} usepackage {ammath} usepackage {keysym} usepackage {amsfonts} usepackage {amssys} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsidemargin } { - 69pt} begin {document} $$ v _ { ge 3} = {v in v mid d_v ge 3 } $$ end {document}。算法的稍微复杂变种在同一时间内工作,同时使用最多n +(4/5)m + o(logn) documentClass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts } usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsideDemargin} { - 69pt} begin {document} $$ n +({4/5})m + o( log n)$$ end {document}位。还示出了DFS可以在o(n + m + min {n,m} log * n) documentclass [12pt]中的n顶点和m边缘的图表中执行DFS和M边缘。{minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsideDemargin} { - 69pt} begin {document} $$ o(n + m + min {n,m } log ^ * !n)$$ end {document}时间使用o(n)位或在o(n + m) documentclass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsidemargin} {-69pt} begin {document} $ $ O(n + m)$$ end {document}时间与O(nloglog(4 + m / n)) documentclass [12pt] {minimal} usepackage {ammath} usepackage {keysym} usepackage {amsfonts } usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsideDemargin} { - 69pt} begin {document} $$ o(n log log(4+ {m / n}))$$ end {document}位,或者,任意int egerk≥1 documentclass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsidemargin} { - 69pt} begin {document} $$ k ge 1 $$$ end {document},o(nlog(k)n) documentClass [12pt] {minimal} usepackage {ammath} usepackage { isysym} usepackage {amsfonts} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsideDemargin} { - 69pt} begin {document} $$ o(n log ^ {(k)} ! n)$$ 结束{document}位。这些结果包括在空间高效的DFS上的所有早期结果中或改善最早的结果。一些新的时间和空间界限显示为DFS的应用,例如在无向图形中计算剪切顶点,桥接,双绞线连接组件和2边缘连接的组件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号