首页> 外文期刊>Algorithmica >On the Analysis of Trajectory-Based Search Algorithms: When is it Beneficial to Reject Improvements?
【24h】

On the Analysis of Trajectory-Based Search Algorithms: When is it Beneficial to Reject Improvements?

机译:关于基于轨迹的搜索算法的分析:什么时候可以拒绝改进?

获取原文
获取原文并翻译 | 示例

摘要

We investigate popular trajectory-based algorithms inspired by biology and physics to answer a question of general significance: when is it beneficial to reject improvements? A distinguishing factor of SSWM (strong selection weak mutation), a popular model from population genetics, compared to the Metropolis algorithm (MA), is that the former can reject improvements, while the latter always accepts them. We investigate when one strategy outperforms the other. Since we prove that both algorithms converge to the same stationary distribution, we concentrate on identifying a class of functions inducing large mixing times, where the algorithms will outperform each other over a long period of time. The outcome of the analysis is the definition of a function where SSWM is efficient, while Metropolis requires at least exponential time. The identified function favours algorithms that prefer high quality improvements over smaller ones, revealing similarities in the optimisation strategies of SSWM and Metropolis respectively with best-improvement (BILS) and first-improvement (FILS) local search. We conclude the paper with a comparison of the performance of these algorithms and a (1,lambda) RLS on the identified function. The algorithm favours the steepest gradient with a probability that increases with the size of its offspring population. The results confirm that BILS excels and that the (1,lambda) RLS is efficient only for large enough population sizes.
机译:我们研究了受生物学和物理学启发的流行的基于轨迹的算法,以回答一个具有普遍意义的问题:什么时候拒绝改进是有益的?与大都市算法(MA)相比,群体遗传学中的一种流行模型SSWM(强选择弱突变)的一个区别因素是前者可以拒绝改进,而后者总是接受改进。我们调查一种策略何时优于另一种策略。由于我们证明了这两种算法都收敛于相同的平稳分布,因此我们将重点放在确定会导致大量混合时间的函数上,这些算法在很长一段时间内会相互超越。分析的结果是对SSWM有效的函数的定义,而Metropolis至少需要指数时间。所识别的函数偏向于优先选择较小质量的算法,这些算法揭示了SSWM和Metropolis的优化策略分别与最佳改进(BILS)和优先改进(FILS)本地搜索相似。我们通过比较这些算法的性能和在确定的函数上的(1,lambda)RLS进行总结。该算法偏爱最陡峭的梯度,其概率随其后代种群的大小而增加。结果证实BILS出色,并且(1,lambda)RLS仅对于足够大的人口规模才有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号