首页> 外文期刊>Advanced Functional Materials >High-Speed, Low-Voltage, and Environmentally Stable Operation of Electrochemically Gated Zinc Oxide Nanowire Field-Effect Transistors
【24h】

High-Speed, Low-Voltage, and Environmentally Stable Operation of Electrochemically Gated Zinc Oxide Nanowire Field-Effect Transistors

机译:电化学门控氧化锌纳米线场效应晶体管的高速,低压,环境稳定运行

获取原文
获取原文并翻译 | 示例

摘要

Single-crystal, 1D nanostructures are well known for their high mobility electronic transport properties. Oxide-nanowire field-effect transistors (FETs) offer both high optical transparency and large mechanical conformability which are essential for flexible and transparent display applications. Whereas the "on-currents" achieved with nanowire channel transistors are already sufficient to drive active matrix organic light emitting diode (AMOLED) displays; it is shown here that incorporation of electrochemical-gating (EG) to nanowire electronics reduces the operation voltage to ≤2 V. This opens up new possibilities of realizing flexible, portable, transparent displays that are powered by thin film batteries. A composite solid polymer electrolyte (CSPE) is used to obtain all-solid-state FETs with outstanding performance; the field-effect mobility, on/off current ratio, transconductance, and subthreshold slope of a typical ZnO single-nanowire transistor are 62 cm~2/Vs, 10~7,155μS/μm and 115 mV/dec, respectively. Practical use of such electrochemically-gated field-effect transistor (EC FET) devices is supported by their long-term stability in air. Moreover, due to the good conductivity (≈10~(-2) S/cm) of the CSPE, sufficiently high switching speed of such EG FETs is attainable; a cut-off frequency in excess of 100 kHz is measured for in-plane FETs with large gate-channel distance of >10 μm. Consequently, operation speeds above MHz can be envisaged for top-gate transistor geometries with insulator thicknesses of a few hundreds of nanometers. The solid polymer electrolyte developed in this study has great potential in future device fabrication using all-solution processed and high throughput techniques.
机译:单晶一维纳米结构以其高迁移率电子传输特性而闻名。氧化物纳米线场效应晶体管(FET)提供高光学透明度和大机械适应性,这对于柔性和透明显示应用至关重要。纳米线沟道晶体管实现的“导通电流”已经足以驱动有源矩阵有机发光二极管(AMOLED)显示器;此处显示出,将电化学门控(EG)结合到纳米线电子器件中可将工作电压降至≤2V。这为实现由薄膜电池供电的柔性,便携式,透明显示器打开了新的可能性。使用复合固体聚合物电解质(CSPE)获得性能优异的全固态FET。典型的ZnO单纳米线晶体管的场效应迁移率,开/关电流比,跨导和亚阈值斜率分别为62 cm〜2 / Vs,10〜7,155μS/μm和115 mV / dec。这种电化学门控场效应晶体管(EC FET)器件在空气中的长期稳定性为其实际应用提供了支持。而且,由于CSPE具有良好的导电性(≈10〜(-2)S / cm),因此可以实现这种EG FET的足够高的开关速度。对于大于10μm的大栅极沟道距离的面内FET,测量的截止频率超过100 kHz。因此,对于具有几百纳米厚度的绝缘体的顶栅晶体管几何形状,可以设想高于MHz的操作速度。本研究中开发的固体聚合物电解质在使用全溶液处理和高通量技术的未来设备制造中具有巨大潜力。

著录项

  • 来源
    《Advanced Functional Materials》 |2013年第14期|1750-1758|共9页
  • 作者单位

    Institute for Nanotechnology Karlsruhe Institute of Technology (KIT) D-76344 Eggenstein-Leopoldshafen, Germany,KIT-TUD Joint Research Laboratory Nanomaterials Technische Universitat Darmstadt (TUD) Institute of Materials Science Petersenstr. 32, D-64287 Darmstadt, Germany;

    Institute for Nanotechnology Karlsruhe Institute of Technology (KIT) D-76344 Eggenstein-Leopoldshafen, Germany;

    Institute for Nanotechnology Karlsruhe Institute of Technology (KIT) D-76344 Eggenstein-Leopoldshafen, Germany;

    Institute for Materials Physics University of Muenster Wilhelm-Klemm-Str. 10, D-48149 Munster, Germany;

    Institute for Nanotechnology Karlsruhe Institute of Technology (KIT) D-76344 Eggenstein-Leopoldshafen, Germany,KIT-TUD Joint Research Laboratory Nanomaterials Technische Universitat Darmstadt (TUD) Institute of Materials Science Petersenstr. 32, D-64287 Darmstadt, Germany,Center for Functional Nanostructures Karlsruhe Institute of Technology (KIT) Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany;

    Institute for Nanotechnology Karlsruhe Institute of Technology (KIT) D-76344 Eggenstein-Leopoldshafen, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号