首页> 外文期刊>Advanced engineering informatics >A hybrid cost estimation framework based on feature-oriented data mining approach
【24h】

A hybrid cost estimation framework based on feature-oriented data mining approach

机译:基于面向特征的数据挖掘方法的混合成本估算框架

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an informatics framework to apply feature-based engineering concept for cost estimation supported with data mining algorithms. The purpose of this research work is to provide a practical procedure for more accurate cost estimation by using the commonly available manufacturing process data associated with ERP systems. The proposed method combines linear regression and data-mining techniques, leverages the unique strengths of the both, and creates a mechanism to discover cost features. The final estimation function takes the user's confidence level over each member technique into consideration such that the application of the method can phase in gradually in reality by building up the data mining capability. A case study demonstrates the proposed framework and compares the results from empirical cost prediction and data mining. The case study results indicate that the combined method is flexible and promising for determining the costs of the example welding features. With the result comparison between the empirical prediction and five different data mining algorithms, the ANN algorithm shows to be the most accurate for welding operations.
机译:本文提出了一个信息学框架,将基于特征的工程概念应用于数据挖掘算法支持的成本估算。这项研究工作的目的是通过使用与ERP系统相关的通用制造过程数据来提供一种更准确的成本估算的实用程序。所提出的方法结合了线性回归和数据挖掘技术,利用了两者的独特优势,并创建了一种发现成本特征的机制。最终估算功能考虑了用户对每种成员技术的置信度,因此该方法的应用实际上可以通过增强数据挖掘能力逐步逐步应用。案例研究演示了提出的框架,并比较了经验成本预测和数据挖掘的结果。案例研究结果表明,该组合方法灵活,有望确定示例焊接特征的成本。通过经验预测和五种不同数据挖掘算法的结果比较,ANN算法显示出对焊接操作最准确的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号