首页> 外文期刊>Advanced engineering informatics >Recognizing people's identity in construction sites with computer vision: A spatial and temporal attention pooling network
【24h】

Recognizing people's identity in construction sites with computer vision: A spatial and temporal attention pooling network

机译:利用计算机视觉识别建筑工地中的人的身份:时空关注池网络

获取原文
获取原文并翻译 | 示例

摘要

Several prototype vision-based approaches have been developed to capture and recognize unsafe behavior in construction automatically. Vision-based approaches have been difficult to use due to their inability to identify individuals who commit unsafe acts when captured using digital images/video. To address this problem, we applied a novel deep learning approach that utilizes a Spatial and Temporal Attention Pooling Network to remove redundant information contained in a video to enable a person's identity to be automatically determined. The deep learning approach we have adopted focuses on: (1) extracting spatial feature maps using the spatial attention network; (2) extracting temporal information using the temporal attention networks; and (3) recognizing a person's identity by computing the distance between features. To validate the feasibility and effectiveness of the adopted deep learning approach, we created a database of videos that contained people performing their work on construction sites, conducted an experiment, and then performed k-fold cross-validation. The results demonstrated that the approach could accurately identify a person's identity from videos captured from construction sites. We suggest that our computer-vision approach can potentially be used by site managers to automatically recognize those individuals that engage in unsafe behavior and therefore be used to provide instantaneous feedback about their actions and possible consequences.
机译:已经开发了几种基于视觉的原型方法来自动捕获和识别施工中的不安全行为。由于基于视觉的方法无法识别使用数字图像/视频捕获的不安全行为的个人,因此难以使用。为了解决这个问题,我们应用了一种新颖的深度学习方法,该方法利用时空注意力集中网络来删除视频中包含的冗余信息,从而可以自动确定一个人的身份。我们采用的深度学习方法着重于:(1)使用空间注意力网络提取空间特征图; (2)使用时间关注网络提取时间信息; (3)通过计算特征之间的距离来识别一个人的身份。为了验证采用深度学习方法的可行性和有效性,我们创建了一个视频数据库,其中包含在施工现场执行工作的人员,进行了实验,然后进行了k倍交叉验证。结果表明,该方法可以从建筑工地拍摄的视频中准确识别一个人的身份。我们建议站点管理员可以潜在地使用我们的计算机视觉方法来自动识别那些从事不安全行为的人员,因此可以用来提供有关其行为和可能后果的即时反馈。

著录项

  • 来源
    《Advanced engineering informatics》 |2019年第10期|100981.1-100981.9|共9页
  • 作者单位

    Huazhong Univ Sci & Technol Sch Civil Engn & Mech Dept Construct Management Wuhan Hubei Peoples R China|Hubei Engn Res Ctr Virtual Safe & Automated Wuhan Hubei Peoples R China;

    Curtin Univ Dept Civil Engn Perth WA 6023 Australia;

    Huazhong Univ Sci & Technol Sch Civil Engn & Mech Dept Construct Management Wuhan Hubei Peoples R China|Hubei Engn Res Ctr Virtual Safe & Automated Wuhan Hubei Peoples R China|Curtin Univ Dept Civil Engn Perth WA 6023 Australia;

    Huazhong Univ Sci & Technol Sch Elect Informat & Commun Wuhan Hubei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Recognition; Convolutional neural network; Recurrent neural network; Videos; Computer vision;

    机译:承认;卷积神经网络递归神经网络影片;计算机视觉;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号