首页> 外文期刊>Computing and informatics >PAIR-WISE TEMPORAL POOLING METHOD FOR RAPID TRAINING OF THE HTM NETWORKS USED IN COMPUTER VISION APPLICATIONS
【24h】

PAIR-WISE TEMPORAL POOLING METHOD FOR RAPID TRAINING OF THE HTM NETWORKS USED IN COMPUTER VISION APPLICATIONS

机译:计算机视觉应用中的HTM网络快速培训的双时临时轮询方法

获取原文
获取原文并翻译 | 示例

摘要

In the paper, several modifications to the conventional learning algorithms of the Hierarchical Temporal Memory (HTM) - a biologically inspired large-scale model of the neocortex by Numenta - have been proposed. Firstly, an alternative spatial pooling method has been introduced, which makes use of a random pattern generator exploiting the Metropolis-Hastings algorithm. The original inference algorithm by Numenta has been reformulated, in order to reduce a number of tunable parameters and to optimize its computational efficiency. The main contribution of the paper consists in the proposal of a novel temporal pooling method -the pair-wise explorer - which allows faster and more reliable training of the HTM networks using data without inherent temporal information (e.g., static images). While the conventional temporal pooler trains the HTM network on a finite segment of the smooth Brownian-like random walk across the training images, the proposed method performs training by means of the pairs of patterns randomly sampled (in a special manner) from a virtually infinite smooth random walk. We have conducted a set of experiments with the single-layer HTM network applied to the position, scale, and rotation-invariant recognition of geometric objects. The obtained results provide a clear evidence that the pair-wise method yields significantly faster convergence to the theoretical maximum of the classification accuracy with respect to both the length of the training sequence (defined by the maximum allowed number of updates of the time adjacency matrix - TAM) and the number of training patterns. The advantage of the proposed explorer manifested itself mostly in the lower range of TAM updates where it caused up to 10 % relative accuracy improvement over the conventional method. Therefore we suggest to use the pair-wise explorer, instead of the smooth explorer, always when the HTM network is trained on a set of static images, especially when the exhaustive training is impossible due to the complexity of the given task.
机译:在本文中,已经提出了对传统的时间记忆(HTM)的传统学习算法的几种修改方法-一种由Numenta生物启发的新皮层的大规模模型。首先,介绍了另一种空间池化方法,该方法利用了利用Metropolis-Hastings算法的随机模式生成器。 Numenta最初的推理算法已经过重新设计,以减少大量可调参数并优化其计算效率。该论文的主要贡献在于提出了一种新颖的时间池化方法-成对浏览器-该方案允许使用没有固有时间信息(例如静态图像)的数据更快更可靠地训练HTM网络。传统的时间池分析器在跨训练图像的平滑布朗样随机游动的有限段上训练HTM网络时,所提出的方法是通过从几乎无限的随机采样(以特殊方式)对模式进行训练的平稳随机行走。我们已经对将单层HTM网络应用于几何对象的位置,比例和旋转不变识别进行了一系列实验。获得的结果提供了明确的证据,即成对方法相对于两个训练序列的长度(由时间邻接矩阵的最大允许更新次数定义- TAM)和培训模式的数量。提议的资源管理器的优势主要表现在TAM更新的较低范围内,与传统方法相比,它可以使相对精度提高10%。因此,我们建议始终在以一组静态图像训练HTM网络时,尤其是在由于给定任务的复杂性而无法进行详尽训练时,始终使用成对浏览器而不是平滑浏览器。

著录项

  • 来源
    《Computing and informatics》 |2012年第4期|p.901-919|共19页
  • 作者单位

    Institute of Measurement Science Slovak Academy of Sciences, Bratislava, Slovakia,AIT Austrian Institute of Technology, GmbH Seibersdorf, Austria;

    Institute of Measurement Science Slovak Academy of Sciences, Bratislava, Slovakia,AIT Austrian Institute of Technology, GmbH Seibersdorf, Austria;

    Institute of Measurement Science Slovak Academy of Sciences, Bratislava, Slovakia,Faculty of Mathematics, Physics, and Informatics Comenius University in Bratislava, Slovakia;

    Institute of Measurement Science Slovak Academy of Sciences, Bratislava, Slovakia,Faculty of Mathematics, Physics, and Informatics Comenius University in Bratislava, Slovakia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    hierarchical temporal memory (HTM); temporal pooler; rapid learning; image explorer; position; scale; and rotation-invariant pattern recognition;

    机译:分层时间记忆(HTM);时间池快速学习;图像浏览器;位置;规模;和旋转不变模式识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号