首页> 外文期刊>ACM transactions on mathematical software >Parallel Unsymmetric-Pattern Multifrontal Sparse LU with Column Preordering
【24h】

Parallel Unsymmetric-Pattern Multifrontal Sparse LU with Column Preordering

机译:带有列预排序的并行非对称模式多面稀疏LU

获取原文
获取原文并翻译 | 示例

摘要

We present a new parallel sparse LU factorization algorithm and code. The algorithm uses a column-preordering partial-pivoting unsymmetric-pattern multifrontal approach. Our baseline sequential algorithm is based on umfpack 4, but is somewhat simpler and is often somewhat faster than umfpack version 4.0. Our parallel algorithm is designed for shared-memory machines with a small or moderate number of processors (we tested it on up to 32 processors). We experimentally compare our algorithm with SuperLU_MT, an existing shared-memory sparse LU factorization with partial pivoting. SuperLU_MT scales better than our new algorithm, but our algorithm is more reliable and is usually faster. More specifically, on matrices that are costly to factor, our algorithm is usually faster on up to 4 processors, and is usually faster on 8 and 16. We were not able to run SuperLU_MT on 32. The main contribution of this article is showing that the column-preordering partial-pivoting unsymmetric-pattern multifrontal approach, developed as a sequential algorithm by Davis in several recent versions of umfpack, can be effectively parallelized.
机译:我们提出了一种新的并行稀疏LU分解算法和代码。该算法使用列预排序的部分枢轴不对称模式多面方法。我们的基线顺序算法基于umfpack 4,但比umfpack 4.0版更简单,并且通常更快。我们的并行算法是为具有少量或中等数量处理器的共享内存计算机设计的(我们在多达32个处理器上对其进行了测试)。我们通过实验将我们的算法与SuperLU_MT进行比较,SuperLU_MT是现有的带有部分数据透视的共享内存稀疏LU分解。 SuperLU_MT的伸缩性比我们的新算法更好,但我们的算法更可靠,通常速度更快。更具体地说,在要考虑因素成本的矩阵上,我们的算法通常在最多4个处理器上更快,并且在8和16上通常更快。我们无法在32上运行SuperLU_MT。本文的主要贡献在于,戴维斯(Davis)在umfpack的多个最新版本中将其作为顺序算法开发的列预排序部分枢轴不对称模式多面方法可以有效地并行化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号