首页> 外文期刊>ACM transactions on knowledge discovery from data >A Unified Framework with Multi-source Data for Predicting Passenger Demands of Ride Services
【24h】

A Unified Framework with Multi-source Data for Predicting Passenger Demands of Ride Services

机译:带有多源数据的统一框架,可预测乘车服务的乘客需求

获取原文
获取原文并翻译 | 示例

摘要

Ride-hailing applications have been offering convenient ride services for people in need. However, such applications still suffer from the issue of supply-demand disequilibrium, which is a typical problem for traditional taxi services. With effective predictions on passenger demands, we can alleviate the disequilibrium by pre-dispatching, dynamic pricing or avoiding dispatching cars to zero-demand areas. Existing studies of demand predictions mainly utilize limited data sources, trajectory data, or orders of ride services or both of them, which also lacks a multi-perspective consideration. In this article, we present a unified framework with a new combined model and a road-network-based spatial partition to leverage multi-source data and model the passenger demands from temporal, spatial, and zero-demand-area perspectives. In addition, our framework realizes offline training and online predicting, which can satisfy the real-time requirement more easily. We analyze and evaluate the performance of our combined model using the actual operational data from UCAR. The experimental results indicate that our model outperforms baselines on both Mean Absolute Error and Root Mean Square Error on average.
机译:乘车应用程序一直在为有需要的人提供便捷的乘车服务。然而,这种应用仍然遭受供需不平衡的问题,这是传统出租车服务的典型问题。通过对乘客需求的有效预测,我们可以通过预先调度,动态定价或避免将汽车调度到零需求区域来缓解不平衡。现有的需求预测研究主要利用有限的数据源,轨迹数据或乘车服务订单或两者兼有,这也缺乏多角度的考虑。在本文中,我们提出了一个具有新组合模型和基于路网的空间分区的统一框架,以利用多源数据并从时间,空间和零需求区域的角度对乘客需求进行建模。此外,我们的框架实现了离线培训和在线预测,可以更轻松地满足实时需求。我们使用来自UCAR的实际运营数据来分析和评估组合模型的性能。实验结果表明,我们的模型在平均绝对误差和均方根误差方面均优于基线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号