首页> 外文期刊>IEEE transactions on mobile computing >ROD-Revenue: Seeking Strategies Analysis and Revenue Prediction in Ride-on-Demand Service Using Multi-Source Urban Data
【24h】

ROD-Revenue: Seeking Strategies Analysis and Revenue Prediction in Ride-on-Demand Service Using Multi-Source Urban Data

机译:Rod-Genfe:使用多源城市数据寻求乘车按需服务的战略分析和收入预测

获取原文
获取原文并翻译 | 示例

摘要

Recent years have witnessed the rapidly-growing business of ride-on-demand (RoD) services such as Uber, Lyft and Didi. Unlike taxi services, these emerging transportation services use dynamic pricing to manipulate the supply and demand, and to improve service responsiveness and quality. Despite this, on the drivers' side, dynamic pricing creates a new problem: how to seek for passengers in order to earn more under the new pricing scheme. Seeking strategies have been studied extensively in traditional taxi service, but in RoD service such studies are still rare and require the consideration of more factors such as dynamic prices, the status of other transportation services, etc. In this paper, we develop ROD-Revenue, aiming to mine the relationship between driver revenue and factors relevant to seeking strategies, and to predict driver revenue given features extracted from multi-source urban data. We extract basic features from multiple datasets, including RoD service, taxi service, POI information, and the availability of public transportation services, and then construct composite features from basic features in a product-form. The desired relationship is learned from a linear regression model with basic features and high-dimensional composite features. The linear model is chosen for its interpretability-to quantitatively explain the desired relationship. Finally, we evaluate our model by predicting drivers' revenue. We hope that ROD-Revenue not only serves as an initial analysis of seeking strategies in RoD service, but also helps increasing drivers' revenue by offering useful guidance.
机译:近年来见证了快速增长的乘车需求(Rod)服务,如优步,Lyft和Didi。与出租车服务不同,这些新兴运输服务使用动态定价来操纵供需,并提高服务响应能力和质量。尽管如此,在司机方面,动态定价会产生一个新问题:如何在新的定价计划下赚取更多乘客。在传统的出租车服务中进行了广泛研究的寻求策略,但在罗克服务中,这些研究仍然很少见,需要考虑更多因素,如动态价格,其他运输服务的地位等。在本文中,我们开发了杆收入,旨在挖掘驾驶收入与寻求战略相关的因素之间的关系,并预测来自多源城市数据提取的驾驶收入。我们从多个数据集中提取基本功能,包括棒服务,出租车服务,POI信息以及公共交通服务的可用性,然后在产品形式中构造从基本功能的复合功能。从具有基本功能和高维复合功能的线性回归模型中汲取所需的关系。选择线性模型以其解释性 - 定量解释所需的关系。最后,我们通过预测司机的收入来评估我们的模型。我们希望Rod-Rements不仅是对杆服务策略的初步分析,而且通过提供有用的指导,帮助提高司机的收入。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号