首页> 外文期刊>ACM Transactions on Graphics >Monte Carlo Geometry Processing: A Grid-Free Approach to PDE-Based Methods on Volumetric Domains
【24h】

Monte Carlo Geometry Processing: A Grid-Free Approach to PDE-Based Methods on Volumetric Domains

机译:Monte Carlo几何处理:对体积域的基于PDE的方法无网路方法

获取原文
获取原文并翻译 | 示例

摘要

This paper explores how core problems in PDE-based geometry processingcan be efficiently and reliably solved via grid-free Monte Carlo methods.Modern geometric algorithms often need to solve Poisson-like equations ongeometrically intricate domains. Conventional methods most often meshthe domain, which is both challenging and expensive for geometry withfine details or imperfections (holes, self-intersections, etc.). In contrast, gridfreeMonte Carlo methods avoid mesh generation entirely, and instead justevaluate closest point queries. They hence do not discretize space, time,nor even function spaces, and provide the exact solution (in expectation)even on extremely challenging models. More broadly, they share manybenefits with Monte Carlo methods from photorealistic rendering: excellentscaling, trivial parallel implementation, view-dependent evaluation, and theability to work with any kind of geometry (including implicit or proceduraldescriptions). We develop a complete “black box†solver that encompassesintegration, variance reduction, and visualization, and explore how it can beused for various geometry processing tasks. In particular, we consider severalfundamental linear elliptic PDEs with constant coefficients on solid regionsof Rğ‘›. Overall we find that Monte Carlo methods significantly broaden thehorizons of geometry processing, since they easily handle problems of sizeand complexity that are essentially hopeless for conventional methods.
机译:本文探讨了基于PDE的几何处理中的核心问题可以通过无网格蒙特卡罗方法进行有效可靠地解决。现代几何算法通常需要解决像泊松等方程几何错综复杂的域。传统方法最常是网格域,几何结构既具有挑战性又昂贵细节或缺陷(漏洞,自交叉点等)。相比之下,Gridfree蒙特卡罗方法完全避免网格生成,而不是评估最近的点查询。因此,他们没有离散空间,时间,甚至是函数空间,并提供确切的解决方案(预期)即使在极具挑战性的模型上。更广泛地,他们分享了很多来自光电型渲染的Monte Carlo方法的好处:优秀缩放,琐碎的并行实现,视图依赖性评估,以及能够使用任何类型的几何(包括隐式或程序)描述)。我们开发了一个包含的完整 - 包含的盒子盒子集成,差异减少和可视化,并探索它的方式用于各种几何处理任务。特别是,我们考虑几个固体区域恒定系数的基本线性椭圆PDErğ'>。总的来说,我们发现蒙特卡罗方法明显拓宽了几何处理的视野,因为它们很容易处理大小的问题而且复杂性对于传统方法基本上无望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号