首页> 外文期刊>ACM Transactions on Graphics >Learning Three-Dimensional Flow for Interactive Aerodynamic Design
【24h】

Learning Three-Dimensional Flow for Interactive Aerodynamic Design

机译:学习三维气流以进行交互式空气动力学设计

获取原文
获取原文并翻译 | 示例

摘要

We present a data-driven technique to instantly predict how fluid flows around various three-dimensional objects. Such simulation is useful for computational fabrication and engineering, but is usually computationally expensive since it requires solving the Navier-Stokes equation for many time steps. To accelerate the process, we propose a machine learning framework which predicts aerodynamic forces and velocity and pressure fields given a three-dimensional shape input. Handling detailed free-form three-dimensional shapes in a data-driven framework is challenging because machine learning approaches usually require a consistent parametrization of input and output. We present a novel PolyCube maps-based parametrization that can be computed for three-dimensional shapes at interactive rates. This allows us to efficiently learn the nonlinear response of the flow using a Gaussian process regression. We demonstrate the effectiveness of our approach for the interactive design and optimization of a car body.
机译:我们提出了一种数据驱动的技术,可以立即预测流体如何围绕各种三维物体流动。这种模拟对于计算制造和工程很有用,但是通常在计算上很昂贵,因为它需要求解许多时间步长的Navier-Stokes方程。为了加快这一过程,我们提出了一种机器学习框架,该框架可以在给定三维形状输入的情况下预测空气动力,速度和压力场。在数据驱动的框架中处理详细的自由形式的三维形状具有挑战性,因为机器学习方法通​​常需要对输入和输出进行一致的参数化。我们提出了一种新颖的基于PolyCube贴图的参数化方法,该参数化方法可以以交互速率针对三维形状进行计算。这使我们能够使用高斯过程回归来有效地了解流动的非线性响应。我们展示了我们的方法在车身的交互设计和优化中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号