首页> 外文期刊>ACM Transactions on Graphics >A Machine Learning Approach for Filtering Monte Carlo Noise
【24h】

A Machine Learning Approach for Filtering Monte Carlo Noise

机译:一种过滤蒙特卡洛噪声的机器学习方法

获取原文
获取原文并翻译 | 示例

摘要

The most successful approaches for filtering Monte Carlo noise usernfeature-based filters (e.g., cross-bilateral and cross non-local meansrnfilters) that exploit additional scene features such as world positionsrnand shading normals. However, their main challenge is finding thernoptimal weights for each feature in the filter to reduce noise butrnpreserve scene detail. In this paper, we observe there is a complexrnrelationship between the noisy scene data and the ideal filter parameters,rnand propose to learn this relationship using a nonlinearrnregression model. To do this, we use a multilayer perceptron neuralrnnetwork and combine it with a matching filter during both trainingrnand testing. To use our framework, we first train it in an offline processrnon a set of noisy images of scenes with a variety of distributedrneffects. Then at run-time, the trained network can be used to drivernthe filter parameters for new scenes to produce filtered images thatrnapproximate the ground truth. We demonstrate that our trained networkrncan generate filtered images in only a few seconds that are superiorrnto previous approaches on a wide range of distributed effectsrnsuch as depth of field, motion blur, area lighting, glossy reflections,rnand global illumination.
机译:过滤基于蒙特卡洛噪声用户特征的过滤器(例如,跨双边和跨非局部均值过滤器)的最成功方法,这些方法利用了其他场景特征,例如世界位置和阴影法线。然而,他们的主要挑战是为滤波器中的每个特征找到最佳权重,以减少噪声但保留场景细节。在本文中,我们观察到噪声场景数据与理想滤波器参数之间存在复杂的关系,并建议使用非线性回归模型来学习这种关系。为此,我们使用了多层感知器神经网络,并在训练和测试期间将其与匹配的过滤器组合。为了使用我们的框架,我们首先在离线处理器中对其进行训练,该过程中没有一组具有各种分布式效果的嘈杂的场景图像。然后在运行时,可以使用训练有素的网络来驱动新场景的过滤器参数,以生成近似于地面实况的过滤后图像。我们证明,我们训练有素的网络可以在短短几秒钟内生成过滤后的图像,在广泛的分布效果(例如景深,运动模糊,区域照明,光泽反射,全局照明)上优于以前的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号