首页> 外文期刊>ACM transactions on Asian language information processing >An Extensible Framework of Leveraging Syntactic Skeleton for Semantic Relation Classification
【24h】

An Extensible Framework of Leveraging Syntactic Skeleton for Semantic Relation Classification

机译:用于语法骨架的可扩展框架,用于语义关系分类

获取原文
获取原文并翻译 | 示例

摘要

Relation classification is one of the most fundamental upstream tasks in natural language processing and information extraction. State-of-the-art approaches make use of various deep neural networks (DNNs) to extract higher-level features directly. They can easily access to accurate classification results by taking advantage of both local entity features and global sentential features. Recent works on relation classification devote efforts to modify these neural networks, but less attention has been paid to the feature design concerning syntax. However, from a linguistic perspective, syntactic features are essential for relation classification. In this article, we present a novel linguistically motivated approach that enhances relation classification by imposing additional syntactic constraints. We investigate to leverage syntactic skeletons along with the sentential contexts to identify hidden relation types. The syntactic skeletons are extracted under the guidance of prior syntax knowledge. During extraction, the input sentences are recursively decomposed into syntactically shorter and simpler chunks. Experimental results on the SemEval-2010 Task 8 benchmark show that incorporating syntactic skeletons into current DNN models enhances the task of relation classification. Our systems significantly surpass two strong baseline systems. One of the substantial advantages of our proposal is that this framework is extensible for most current DNN models.
机译:关系分类是自然语言处理和信息提取中最基本的上游任务之一。最先进的方法利用各种深度神经网络(DNN)直接提取更高级别的功能。通过利用本地实体特征和全局典信功能,可以轻松访问准确的分类结果。最近对关系分类的作品投入努力修改这些神经网络,但对语法的特征设计已经缩短关注。然而,从语言角度来看,句法特征对于关系分类至关重要。在本文中,我们提出了一种新颖的语言激励方法,通过施加额外的句法限制来增强关系分类。我们调查句法骷髅以及识别隐藏类型类型的句子骨架。在先前语法知识的指导下提取句法骨架。在提取过程中,输入句子经常分解成句法更短,更简单的块。 Semeval-2010任务8的实验结果8基准表明将句法骨架掺入当前的DNN模型,增强了关系分类的任务。我们的系统显着超越了两个强大的基线系统。我们提案的实质性优势之一是该框架对于大多数当前DNN模型来说是可扩展的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号