首页> 外文OA文献 >Classification of semantic relations in different syntactic structures in medical text using the MeSH hierarchy
【2h】

Classification of semantic relations in different syntactic structures in medical text using the MeSH hierarchy

机译:利用mesH层次对医学文本中不同句法结构的语义关系进行分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Two different classification algorithms are evaluated in recognizing semantic relationships of different syntactic compounds. The compounds, which include noun- noun, adjective-noun, noun-adjective, noun-verb, and verb-noun, were extracted from a set of doctors' notes using a part of speech tagger and a parser. Each compound was labeled with a semantic relationship, and each word in the compound was mapped to its corresponding entry in the MeSH hierarchy. MeSH includes only medical terminology so it was extended to include everyday, non-medical terms. The two classification algorithms, neural networks and a classification tree, were trained and tested on the data set for each type of syntactic compound. Models representing different levels of MeSH were generated and fed into the neural networks. Both algorithms performed better than random guessing, and the classification tree performed better than the neural networks in predicting the semantic relationship between phrases from their syntactic structure.
机译:在识别不同句法化合物的语义关系时,评估了两种不同的分类算法。这些化合物包括名词-名词,形容词-名词,名词-形容词,名词-动词和动词-名词,它们是使用一部分语音标记器和解析器从一组医生的笔记中提取的。每个化合物都标记有语义关系,并且化合物中的每个单词都映射到MeSH层次结构中的相应条目。 MeSH仅包含医学术语,因此已扩展为包括日常的非医学术语。在每种语法化合物类型的数据集上训练和测试了两种分类算法,即神经网络和分类树。生成了代表不同水平的MeSH的模型,并将其输入到神经网络中。两种算法的性能均优于随机猜测,分类树的性能优于神经网络,可从其句法结构预测短语之间的语义关系。

著录项

  • 作者

    Bhooshan Neha;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号