首页> 外文期刊>Knowledge-Based Systems >Leveraging question target word features through semantic relation expansion for answer type classification
【24h】

Leveraging question target word features through semantic relation expansion for answer type classification

机译:通过语义关系扩展来利用问题目标词的特征进行答案类型分类

获取原文
获取原文并翻译 | 示例

摘要

Answer type classification is a vital step of question answering systems to detect the most suitable target answer type. Highly accurate identification and classification of an answer type can help identify users' question targets and filter out irrelevant candidate answers to improve system performances. This paper proposes a novel hybrid approach, named as ATICM, for automated answer type identification and classification by utilizing both syntactic and semantic analysis. We firstly propose to integrate four strategies to identify question target features by using dependency relations and rules. Afterwards, we leverage semantic relations to expand the extracted features. Our experiment datasets are publicly available UIUC and TREC10 annotated question datasets. The result shows the ATICM approach achieves an accuracy of 93.9% on the URIC dataset and 92.8% on the TREC10 dataset. The performance outperforms the state-of-the-art baseline methods, demonstrating its effectiveness in answer type classification. (C) 2017 Elsevier B.V. All rights reserved.
机译:答案类型分类是问答系统检测最合适的目标答案类型的重要步骤。答案类型的高度准确的识别和分类可以帮助识别用户的问题目标,并过滤掉不相关的候选答案,从而提高系统性能。本文提出了一种新的混合方法,称为ATICM,通过利用语法和语义分析来自动进行答案类型的识别和分类。我们首先提出整合四种策略,通过使用依赖关系和规则来识别问题目标特征。之后,我们利用语义关系来扩展提取的特征。我们的实验数据集是公开可用的UIUC和TREC10注释问题数据集。结果表明,ATICM方法在URIC数据集上的准确性达到93.9%,在TREC10数据集上的准确性达到92.8%。该性能优于最新的基线方法,证明了其在答案类型分类中的有效性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2017年第1期|43-52|共10页
  • 作者单位

    Guangdong Univ Foreign Studies, Sch Informat Sci & Technol, Guangzhou, Guangdong, Peoples R China;

    Guangdong Univ Foreign Studies, Sch Informat Sci & Technol, Guangzhou, Guangdong, Peoples R China;

    South China Univ Technol, Sch Software Engn, Guangzhou, Guangdong, Peoples R China;

    Guangzhou Univ Chinese Med, Affiliated Hosp 2, Guangzhou, Guangdong, Peoples R China;

    Guangdong Univ Foreign Studies, Sch Business, Guangzhou, Guangdong, Peoples R China|Univ New South Wales, Fac Built Environm, Sydney, NSW, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Answer type identification; Classification; Question target; WordNet;

    机译:答案类型识别分类分类问题目标WordNet;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号