首页> 美国卫生研究院文献>PLoS Computational Biology >A conceptual and computational framework for modelling and understanding the non-equilibrium gene regulatory networks of mouse embryonic stem cells
【2h】

A conceptual and computational framework for modelling and understanding the non-equilibrium gene regulatory networks of mouse embryonic stem cells

机译:用于建模和理解小鼠胚胎干细胞非平衡基因调控网络的概念和计算框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The capacity of pluripotent embryonic stem cells to differentiate into any cell type in the body makes them invaluable in the field of regenerative medicine. However, because of the complexity of both the core pluripotency network and the process of cell fate computation it is not yet possible to control the fate of stem cells. We present a theoretical model of stem cell fate computation that is based on Halley and Winkler’s Branching Process Theory (BPT) and on Greaves et al.’s agent-based computer simulation derived from that theoretical model. BPT abstracts the complex production and action of a Transcription Factor (TF) into a single critical branching process that may dissipate, maintain, or become supercritical. Here we take the single TF model and extend it to multiple interacting TFs, and build an agent-based simulation of multiple TFs to investigate the dynamics of such coupled systems. We have developed the simulation and the theoretical model together, in an iterative manner, with the aim of obtaining a deeper understanding of stem cell fate computation, in order to influence experimental efforts, which may in turn influence the outcome of cellular differentiation. The model used is an example of self-organization and could be more widely applicable to the modelling of other complex systems. The simulation based on this model, though currently limited in scope in terms of the biology it represents, supports the utility of the Halley and Winkler branching process model in describing the behaviour of stem cell gene regulatory networks. Our simulation demonstrates three key features: (i) the existence of a critical value of the branching process parameter, dependent on the details of the cistrome in question; (ii) the ability of an active cistrome to “ignite” an otherwise fully dissipated cistrome, and drive it to criticality; (iii) how coupling cistromes together can reduce their critical branching parameter values needed to drive them to criticality.
机译:多能胚胎干细胞在体内分化为任何细胞类型的能力使其在再生医学领域具有不可估量的价值。但是,由于核心多能网络和细胞命运计算过程的复杂性,尚无法控制干细胞的命运。我们介绍了一种基于Halley和Winkler的分支过程理论(BPT)以及基于该理论模型得出的基于Agent的计算机模拟的干细胞命运计算的理论模型。 BPT将转录因子(TF)的复杂产生和作用抽象为单个关键的分支过程,该过程可能消散,维持或变得超临界。在这里,我们采用单个TF模型并将其扩展到多个交互的TF,并构建基于代理的多个TF的仿真,以研究此类耦合系统的动力学。我们以迭代的方式共同开发了模拟和理论模型,目的是对干细胞命运的计算有更深入的了解,以影响实验的努力,而这又可能会影响细胞分化的结果。所使用的模型是自组织的一个示例,可以更广泛地应用于其他复杂系统的建模。基于该模型的模拟,尽管目前在其代表的生物学范围上受到限制,但支持Halley和Winkler分支过程模型在描述干细胞基因调控网络行为方面的实用性。我们的模拟显示了三个关键特征:(i)取决于所讨论的Cistrome的细节,存在分支过程参数的临界值; (ii)活跃的犯罪现场“点燃”原本完全消散的犯罪现场并使其达到临界状态的能力; (iii)将耦合在一起如何减少将其驱动到临界状态所需的临界分支参数值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号